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Abstract
As simulation becomes more present in the military context for variate purposes, the need for accurate behaviors is of
paramount importance. In the air domain, a noteworthy behavior relates to how a group of aircraft moves in a coordi-
nated way. This can be defined as formation flying, which, combined with a move-to-goal behavior, is the focus of this
work. The objective of the formation control problem considered is to ensure that simulated aircraft fly autonomously,
seeking a formation, while moving toward a goal waypoint. For that, we propose the use of artificial potential fields,
which reduce the complexities that implementing a complete cognition model could pose. These fields define forces that
control the movement of the entities into formation and to the prescribed waypoint. Our formation control approach is
parameterizable, allowing modifications that translate how the aircraft prioritize its sub-behaviors. Instead of defining this
prioritization on an empirical basis, we elaborate metrics to evaluate the chosen parameters. From these metrics, we
use an optimization methodology to find the best parameter values for a set of scenarios. Thus, our main contribution is
bringing together artificial potential fields and simulation optimization to achieve more robust results for simulated mili-
tary aircraft to fly in formation. We use a large set of scenarios for the optimization process, which evaluates its objec-
tive function through the simulations. The results show that the use of the proposed approach may generate gains of up
to 27% if compared to arbitrarily selected parameters, with respect to one of the metrics adopted. In addition, we were
able to observe that, for the scenarios considered, the presence of a formation leader was an obstacle to achieving the
best results, demonstrating that our approach may lead to conclusions with direct operational impacts.
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1. Introduction

Moving formations have been observed through centuries

in the most variate forms and contexts. Scientists have

investigated these structures through various methods,

which aimed to identify some of the guiding parameters of

such formations. Some of the most prominent methods

consider density of individual aggregation, group polarity,

and nearest neighbor distance and position.1

Inspired by several natural examples, humans have also

invested efforts on cooperative ways of moving. For

instance, human hunter-gatherers have employed foraging

techniques that rely on specific movements, for finding

food and retrieving it.2 More recently, with the advent of

airborne platforms, even more nature-inspired swarming

movements have been employed by professionals of sev-

eral fields, what has increased further with the use of

drones and other autonomous entities in real or simulated

operational scenarios.3

In the modern military context, the use of formations

may serve different purposes, such as: to maximize fire-

power, to saturate enemy forces, to minimize the oppo-

nent’s maneuver options, and to enlarge sensor coverage

area. In the air domain, more specifically, this may be

summarized as mutual support, which one can define as

‘‘a contract within a flight of two or more aircraft that sup-

ports the flight’s mission objectives. An effective mutual

support contract will enable a flight to maintain the
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offensive while enhancing its survival in a hostile

environment.’’4

Being such an important facet of air warfare, analysts

have to also consider formation flying, when simulating

scenarios. Due to increasingly tighter budgetary restric-

tions, armed forces from around the world have been

investing on simulations, rather than live exercises.5

However, the validity of a simulation is directly related to

its model fidelity, which include both physical and beha-

vioral aspects.

Therefore, to provide a way to enrich entity behavior

fidelity, this research focuses on the ability of simulated

entities, representing military aircraft, to fly in a forma-

tion. The formation should be parameterizable, allowing it

to consider priorities, which should guide how the entities

behave. Moreover, the formation is evaluated through

simulation with respect to some dynamically changing

measurements, which are the basis for optimizing the for-

mation control laws, for the given conditions. The under-

lying goal of the formation control problem considered in

this work is to ensure that the simulated aircraft fly auton-

omously, seeking a formation, while moving toward a pre-

specified goal waypoint.

The approach we propose relies on artificial potential

fields, which control the flight formation as they command

headings and velocities for each entity. The reason for

employing such method is to reduce the complexities that

modeling a complete swarming mechanism could require

and the amount of training tasks that machine-learning

methods would require. Furthermore, the use of a parame-

trized model allows for a faster evaluation of its results,

which are simulated and optimized for the given condi-

tions. The potential fields are a simple representation of

multiple constraints and goals in a swarm system, control-

ling the overall attraction and repulsion movements

between aircraft and to the goal waypoint. In summary,

potential fields generate desired velocities and headings to

define a trajectory for each entity, which leads them to

keeping a formation and flying to the goal concomitantly.

Having defined the potential fields, we implement them

within the cognitive models of the simulated aircraft, guid-

ing their maneuvering decisions. With that, we execute a

scenario and evaluate the trajectory with regard to some

metrics that represent the degree of mutual protection

experienced during the flight. These ratings generate val-

ues that supervise an optimization method that aims to

achieving a given objective, which could be the minimiza-

tion of the distances between the aircraft, for instance.

With variations of the initial conditions, such as the air-

craft original locations, we can define more robust forma-

tion control laws, that can be used to guide the simulated

aircraft in further scenarios.

We demonstrate the presented approach by a series of

simulations with their results being subject to the prede-

fined metrics. These metrics, which guide the optimization

process by varying the control laws, allow for achieving

increasingly better outcomes for the given inputs. Since,

for different scenarios and initial conditions, one may need

to employ specific behavior patterns, the proposed method

allows for a flexible prioritization of some aspects of the

formation flight, through its parametrization. During the

tests, we consider two metrics to guide the optimization

process calculating the simulation function value. The first

is based on minimizing the sum of the overall distances

between each of the entities two by two, as well as their

distances to the goal waypoint. The second relates to the

definition of an average trajectory line, minimizing the

squares of the distances of each entity to this path. Besides,

another variation of the tests comes by defining a forma-

tion leader, which performs a direct flight to the goal way-

point, regardless of the other aircraft within formation.

The main contribution of this work is bringing together

artificial potential fields and simulation optimization (SO)

to defining robust and flexible formation control for simu-

lated military entities, encompassing the main behavioral

aspects considered.

The remainder of this article is structured as follows.

Background section presents background information with

regards to the addressed problem. Control Model section

provides the description of the proposed model for head-

ing and speed control, explaining how the formation is

achieved and maintained throughout the simulation.

Simulation section reports the details about the exploited

simulation technologies and test scenarios, providing the

necessary understanding of the models and the simulation

environment we adopted. Optimization section addresses

the optimization part of the work, with a discussion with

respect to its metrics and how we use them to tune the

parameters of the model. These sections congregate all the

methods used by us to generate the results, which are then

presented in Results and Analysis section, considering

each of the performed tests, together with their analysis.

Finally, Conclusions and future work section concludes

the work, pointing out some of the proposed future

developments.

2. Background
2.1. Simulation

A simulation is the attempt of reproducing the operation of

a model over time.6 Therefore, models are its most funda-

mental elements, representing the main characteristics of

systems and processes. Rapid execution of simulation

models is important in order to explore a wide variety of

scenarios quickly.7 These modeled aspects may be either

behavioral or physical, defining functions and properties

of the subject, which are expressed by assumptions con-

cerning the operation of the systems. In summary, as stated

by Abielmona et al.,8 the model represents the system
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itself, whereas the simulation represents its operation over

time.

In the military context, combat modeling abstracts and

simplifies combat units, including their behaviors, activi-

ties, and interrelations, in order to deal with defense-

related problems and research questions.9 The levels of

simplification of these models define a combat modeling

spectrum, as in Figure 1.

Mainly because analytic models are either not available

or intractable, there is a need to formulate the four types

to the right in Figure 1. These cases are where simulation

takes place, since there are not many ways to achieve the

required results other than imitating the system behaviors

over time in controlled environments.

The human involvement within these types is what dif-

ferentiates them, which can also be done by the terms live,

virtual, and constructive (LVC) simulation.11 In live simu-

lations, real people operate real systems, while, in virtual

simulations, real people operate simulated systems.

Finally, in constructive simulations, simulated people

operate simulated systems, as in Figure 2.

In the context of this work, we consider only construc-

tive simulations and that is the reason why the entity mod-

els within the scenario behave themselves autonomously,

as there is no human intervention during simulation time.

To develop entities of such nature, some of the core

activities that every battlefield presents must be modeled

by the analysts as presented in Figure 3.

Due to the complexity of dealing with all these core

activities at once, this work focuses on modeling the mov-

ing behavior of the entity. Considering that the research

fits in the context of air combat, the movement poses a

great challenge due to the number of degrees of freedom

available, which admit very flexible maneuvers. When

taking into account multiple entities behaving concomi-

tantly, their coordination can be even more challenging.

This coordinated movement between a number of aircraft

can be designated as formation flying. The United States

Federal Aviation Administration (FAA) defines formation

flight as: ‘‘more than one aircraft which, by prior arrange-

ment between the pilots, operate as a single aircraft with

Figure 1. Combat modeling spectrum.10

Figure 2. Simulation classification framework.12

Figure 3. Combat modeling.9
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regard to navigation and position reporting.’’ In addition,

it states that the separation between aircraft within the for-

mation is the responsibility of the pilots within it, includ-

ing transition periods when aircraft maneuver to attain

separation from each other, as well as during join-up and

breakaway.13

From this, we conclude that a main aspect of a forma-

tion is the separation between its aircraft. Besides, since

the aircraft operate as one, they need to be cohesive, that

is, they should not be too far from each other. Finally, the

coordination of their movement provides a way that allows

a coherent navigation, which can be defined as alignment.

These are consistent aspects with respect to what was pro-

posed in Reynolds’ flocking model,14 as Figure 4 depicts,

being summarized as:

� Separation: steer to avoid crowding local

flockmates.
� Alignment: steer toward the average heading of

local flockmates.
� Cohesion: steer to move toward the average posi-

tion of local flockmates.

2.2. Optimization

This work proposes the use of a simulation of higher fide-

lity, which has control models for the simulated aircraft as

a means to achieve more realistic results. The simulation

is used to optimize an objective function subject to some

constraints, what is the very definition of a very prolific

research topic called SO.16

Unlike model-based mathematical programming, SO

does not assume that an algebraic description of the simu-

lation is at hand. The simulation is available as a black

box, allowing only evaluations of the objective function a

particular set of input parameters, that is, the approaches

only depend on input and output data from the simulation

in their search for optimal input parameters.17

In other words, as stated by Carson and Maria,18 SO

can be defined as the process of finding the best values for

the input variables from among all possibilities without

explicitly evaluating each of them. The evaluations are,

therefore, made through simulation, which is then coupled

with optimization methods.

There are many different metaheuristic algorithms that

analysts may use for SO. Since the performance of the

metaheuristic methods has a great dependency on their

parametrizations, one needs to carefully select the para-

meters used on any of these optimization techniques to

achieve good results. To that end, Bartz-Beielstein et al.19

propose the use of a methodology called sequential para-

meter optimization (SPO) to efficiently design metaheuris-

tics, being also applicable as an optimization method in

itself.

This approach has its origins in design of experiments

(DoE)20 and in design and analysis of computational

experiments (DACE),21 which are very well-established

terms within the literature. Kleijnen22 proposes the term

design and analysis of simulation experiments (DASE) for

those with either deterministic or random simulation.

With respect to outputs, we realize that design and analy-

sis of experiments are intertwined, inasmuch as the analysis

uses an approximation of the I/O function of the experi-

ment. To do so, the analysis usually relies on a metamodel,

which can be of several types, such as polynomials,23 kri-

ging,24 and the generalized linear model.25 Researchers

often use polynomial methods for local optimization prob-

lems, whereas, for global approximation, spatial correlation

methods, such as kriging, are more recommended.23 This is

the reason why we adopt kriging in the context of our work.

Scientists use metamodels as fast surrogates for the

objective function, facilitating the optimization of simula-

tion models.26 With the function metamodel provided by

kriging, one can have a view on how the I/O function of

the experiment behaves. This metamodel can be either

directly optimized—in order to find maximum or mini-

mum values—or further improved by performing more

experiments. To define what are good factor combinations

to properly intensify the search, we advocate for the use of

a sequential method, based on Expected Improvement

(EI), under computing budget constraints.

Jones, Schonlau, and Welch27 advocated the use of EI

as a criterion to select points during a sequential optimiza-

tion process in a methodology called Efficient Global

Optimization (EGO). This is a popular search heuristic

that tries to balance the exploration and the exploitation

aspects of the optimization, in order to leave from possible

local optima. More specifically, EGO selects input combi-

nations based on maximizing the EI, which is computed

through a kriging metamodel that approximates the simu-

lation’s I/O function.

In a higher level, one can interpret EGO as a form of

SPO, applied to problem parameters, as previously

defined. SPO is a framework based on active experimenta-

tion that aims to test some hypotheses, according to the

following procedure:28

1. Select a model F (e.g. through kriging) to describe

a functional relationship;

Figure 4. Alignment (a), cohesion (b), and separation (c).15
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2. Select an experimental design, for example, LHD;

3. Generate data, that is, perform simulation experi-

ments; and

4. Refine the model until the hypothesis can be

accepted/rejected.

In other words, SPO uses the available budget sequentially,

that is, it utilizes information from the exploration of the

search space to guide the search by building a metamodel

(kriging). After that, it chooses new design points based on

predictions (expected improvement) from the metamodel.

Thus, it refines the metamodel stepwise to improve knowl-

edge about the search space.29 Its main goal is to ease the

burden of objective function evaluations, when a single

evaluation requires a significant amount of resources.28

In summary, our approach consists of a single objective

optimization, with multimodal response surface, that is, a

global optimization problem. With respect to the tech-

niques employed in previous research, it is quite difficult

to compare them, since the performance may vary accord-

ing to the nature of the simulation, as well as the nature of

the control variables, which are the input parameters.

Besides, much of the literature does not present many per-

formance evaluations and comparisons, affirming that

many of the SO methods are quite different from those

available commercially in this regard.

2.3. Formation control

The approach we proposed in this work relies on the use

of artificial potential fields, which, in turn, define artificial

potential forces that control the movement of the entities

into formation and to the prescribed goal waypoint.

According to some of the criteria available in the litera-

ture, the approach falls on solving an amorphous forma-

tion tracking problem, with decentralized control (relative

and local), by a distance-based behavioral strategy.

Potential functions have been used in formation track-

ing problems, where a controller is designed based on the

gradient of the corresponding potential function, taking

into consideration a common interest of the whole group.30

This is done by carefully choosing the potential function,

guaranteeing the desired group behavior.

Even though this method relies on artificial potential

fields, all the adaptiveness comes from purely mathemati-

cal relations, with no form of optimization per se.

Vadakkepat et al.31 proposed a new approach called

Evolutionary Artificial Potential Fields (EAPF), which is

truly relevant for our work, since it uses genetic algo-

rithms to optimize the potential functions. Furthermore,

their results are verified by simulation, what also relates to

the proposed approach. The difference is that this is done

with the goal of optimizing the path of the entity with

respect to a goal-factor, an obstacle-avoidance-factor, and

the minimum-path-length-factor, which are not directly

applicable to formation control problems.

A similar approach is present by Zhang et al.,32 since

they also schemed a method to optimize a global obstacle

avoidance path originated by artificial potential fields

through genetic algorithms. The basic difference resides

on the fact that they make a comparison between the cur-

rent position of the entity and its position on the previous

step of the simulation. If there is no difference between

these positions, it is considered that the entity has reached

a local minimum, what generates a change on an obstacle

potential scale factor.

It is important to note that all simulations performed in

these works possess a relatively low level of complexity,

with very simplified models. Besides, since the problem to

be solved is related to path planning, they often focus only

on a single entity, thus, there is no concern with regards to

formation movement.

Scharf et al.33 affirms that many behavioral-based meth-

ods and potential fields are frequently combined in forma-

tion control, whereas Oh et al.34 asserts that amorphous

formation control is generally related to these kinds of

methods. The latter also relate artificial potential functions

to distance-based approaches, when speaking of amor-

phous formations. Distance-based approaches are com-

monly associated with decentralized control, or relative

and local, since there is not a global coordinated system,

inasmuch as the distances are calculated with regards to

each pair of entities.

In distance-based approaches, control laws are non-

linear even if entity models are linear with respect to the

input variables, which makes it more complicated to uti-

lize non-behavioral approaches, with very centralized con-

trollers.34 The artificial potential functions are responsible

to control the inter-agent distances with the main advan-

tage of agents needing less global information compared

to position- and displacement-based control.

As a variation of the mentioned approach, we con-

ducted some tests to assess the influence of the presence

of a leader in the formation, which flies directly to the

goal waypoint regardless of the other entities. This indir-

ectly configures a type of leader-follower approach, even

though no other alterations were performed within the

original methodology.

In summary, although some global optimization was

proposed on the field of path planning with artificial poten-

tial fields, it was not extended to formation control prob-

lems, whereas the formation control approaches that utilize

artificial potential fields do not employ optimization meth-

ods. Moreover, the simulations performed for validating

the methods were rather simplified, not resembling the

level of fidelity of the one used by us. Therefore, our work

contributes by integrating some of the methods presented

in this section, to solve the formation control problem of

simulated military aircraft.
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Finally, we highlight that approaches based on artificial

potential fields have been paid more attention to because

of advantages such as convenient calculation, simple

implementation, and outstanding real-time performance.35

This is also true when compared with machine

learning–based methods, primarily because of the heavy

training/retraining tasks they may need,36 which is even

more relevant when speaking of military problems that

have scarcely available data. Since many machine-

learning algorithms create a model from sample inputs to

operate,37 this scarcity is essential when choosing which

approach to employ and may be worked around using syn-

thetic data, for instance. However, in this case, the

machine-learning model results are highly dependent on

the data generation method, which may only transfer the

need for a more deterministic and explicit approach (such

as artificial potential fields) from the formation control

itself to the synthetic data creation process.

3. Control model

The proposed model aims to defining commanded head-

ings and speeds for the aircraft. These commands are then

provided to each entity within the simulation, which pos-

sesses its own dynamic model. The models receive

the commands as inputs and compute the next state for the

given entity, considering its dynamic response, that is, the

approach is not concerned with the control aspects of each

aircraft, since this is taken in consideration within the air-

craft model itself, complying with all restrictions imposed

by its systems.

The main issue addressed by this approach is to maxi-

mize mutual support by keeping a formation, while flying

to a predefined waypoint. Therefore, the entities must cope

with two basic goals, which may be conflicting between

each other: fly to waypoint and fly to formation. A typical

scenario is depicted in Figure 5.

3.1. Heading control

The main concerns of the proposed approach are to attract

entities into a formation and to allow them to stay in that

formation as they move to a predefined waypoint (move-

to-goal). For producing the formation, attraction forces

guarantee the cohesion and repulsion forces act in the

separation, following the model proposed by Reynolds.14

3.1.1. Join (cohesion). The first aspect of the model applies

to how each aircraft is attracted to the other members of its

formation, as presented in Equation (1)

~Fcohesion, i, j =
1

~d pi, pj

� �2 ð1Þ

The value d(pi, pj) is the distance between the aircraft.

Thus, for each aircraft, there is a cohesion resultant force

defined by Equation (2), that is the summation of all the

artificial forces generated by the other members of the

formation

~Fcohesion, i =
X

j

~Fcohesion, i, j ð2Þ

3.1.2. Move-to-goal. The same formulation would apply to

how the aircraft must move toward the goal position,

which is considered to be the most important factor when

defining commanded headings and speeds. In a similar

way, this would be done through the definition of an artifi-

cial attraction force between the ith aircraft and the goal

as expressed in Equation (3)

~Fgoal, i =
1

~d pi, pgoal

� �2 ð3Þ

When considering this move-to-goal force in conjunc-

tion with the join force presented, there is a rather undesir-

able behavior that may emerge. This is due to the fact that

all forces may cancel each other, producing a zero resul-

tant. To avoid that we suggest the use of another type of

force to account for the move-to-goal aspect of the forma-

tion control. Since the cause for the resultant force to be

zero is ~Fcohesion, i to have the same magnitude as ~Fgoal, i

with opposite directions, the proposed move-to-goal force

has its intensity given by Equation (4), pointing to the way-

point from the position of the ith aircraft

Fmtg, i =Fcohesion, i 3 f ð4Þ

Figure 5. Formation problem scenario example.
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In Equation (4), f is a value that defines what is the pri-

ority between flying in formation and reaching the way-

point. It is called grouping factor and is defined in

Equation (5)

f =
10

1+ 99c
100

ð5Þ

Equation (5) sets a limit of 10 times that the move-to-

goal behavior may be prioritized over formation flying or

vice versa, since value c may vary from 0 to 100. The

lower bound for f is set on 0.1, which would mean that

Fcohesion, i = 103 Fmtg, i, whereas the upper bound is 10,

meaning the opposite, that is, Fmtg, i = 103 Fcohesion, i. The

reason to use Equation (5) instead of setting f directly as a

value from 0.1 to 10 was for the users of the simulation

platform to have a simpler slider in which they could select

a value from 0 to 100.

Besides the case where f = 1, which should be avoided

by the optimization process itself, with the formulation

introduced in Equation (4), there is another case where the

resultant force in the aircraft is set to zero, which is when

the formation forces nullify each other. To avoid this to hap-

pen, we define that, if Fcohesion, i = 0, then Fmtg, i =Fgoal, i.

3.1.2. Safety (separation). The second element on

Reynolds14 formulation is separation. Since the aircraft are

attracted to each other, eventually they would end up col-

liding. To avoid this to happen, it is defined a repulsion

area, which also has a transition zone, with no potential

field acting. In summary, when the distance between an

aircraft to another is smaller than the minimum safety dis-

tance, the attraction gravitational force is converted to

repulsion, possessing a similar formulation with the only

difference being a negative sign, as stated in Equation (6).

This minimum distance may also vary according to the

application, for instance, a reconnaissance mission could

impose a larger distance between the aircraft flying in

formation.

~Fseparation, i, j = � 1

~d pi, pj

� �2 ð6Þ

Similarly, there is a summation of the repulsion forces

of each aircraft, forming the resultant repulsion force stated

in Equation (7).

~Fseparation, i = �
X

j

~Fseparation, i, j ð7Þ

If the resultant cohesion force is added to the resultant

repulsion force, a resultant formation force is defined, as

showed in Equation (8).

~Fformation, i =~Fcohesion, i +~Frepulsion, i ð8Þ

Finally, this resultant formation force can be added to

the goal force, resulting in the total force that acts in a

given entity, what is stated in Equation (9) and showed in

Figure 6.

~Ftotal, i =~Fgoal, i +~Fformation, i ð9Þ

Figure 6 presents a scenario in which there is no repul-

sion force, since the aircrafts (ai and aj) are not within the

minimum distance (dmin) for that to happen. We also point

out that even though we account for the separation in our

formulation, collisions are not possible in the scenarios

considered by us. This is because the aircraft remain within

prespecified flight levels (altitude intervals), which differ

from each other. For scenarios with a greater demand for

collision avoidance, we suggest that the separation force to

be stronger, maybe considering a higher-order power in

the denominator. Moreover, all calculations are made in

two dimensions, even though the vectorial treatment would

be the same for considering a third dimension, which could

increase computational time for processing.

3.2. Speed Control (alignment)

Finally, the third element on Reynolds14 formulation is

alignment, which is performed by the speed control. We

also controlled this by the distances between aircraft in a

similar way. We define the commanded speed through

some calculations that utilize the absolute value of the

resulting force acting on a given aircraft. We convert this

value on a percentage, which we apply to the maximum

aircraft speed in order to define the resulting command

speed as Equation (10) shows

Figure 6. Gravitational grouping forces.
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vcommanded, i =
vmax, i + vmin, i

2
+ p vmax, i �

vmax, i + vmin, i

2

� �

ð10Þ

The aircraft model defines the velocities vmax, i and

vmin, i, which are kept constant in our case. The percentage

value p, defines how fast the aircraft should fly and is

defined by Equation (11).

p=
~Ftotal, i

�� ��
~Fformation, i

�� ��+ ~Fmtg, i

�� �� ð11Þ

From Equation (11), we conclude that the p value has

its upper bound in 1. Therefore, the maximum value

assumed by vcommanded, i in Equation (10) is vmax, i, whereas
the minimum value is (vmax, i + vmin, i)=2. The decision to

use the average between maximum and minimum speeds

as the lower bound was to accelerate the process of either

formation flying or moving to the goal waypoint, what we

justify by the fact that rarely pilots would employ the air-

craft’s minimum speeds during such a flight.

4. Simulation

One of the greatest strengths of the proposed approach is

to utilize a reliable set of models to achieve simulation

results close to what is expected in the reality. Since the

main goal is to define CGF that will resemble what real

pilots would do in the field, the behavior of the entities

must be coupled with well-founded models, which present

a sufficient level of fidelity. We do this through the use of

the ASA Framework (Ambiente de Simulacxão Aerospacial

in Portuguese),38 which is a project developed in the

Command, Control, Communications, Computers,

Intelligence, Surveillance, and Reconnaissance (C4ISR)

Division from the Brazilian Air Force’s Institute for

Advanced Studies (Instituto de Estudos Avancxados—
IEAv, in Portuguese). Its main goal is to provide a compu-

tational solution that enables the simulation of operational

scenarios of interest of the Air Force.

This is done through constructive simulation, where

participants establish scenarios, parameters, and command

decisions, which are simulated to support the development

of tactics, techniques, and procedures.39 Therefore, the

concept of simulation to which this work refers is the one

where scenario elements are represented through autono-

mous agents that can take their own decisions based on

artificial intelligence models or preestablished rules.

ASA’s simulation engine is based on the mixed reality

simulation platform (MIXR), previously known as

OpenEaagles.40 It is based on EAAGLES (Extensible

Architecture for the Analysis and Generation of Linked

Simulations), a simulation framework that the United

States Air Force develops and maintains to support several

simulation activities. MIXR is an open-source set of code

libraries in C++ for the creation of various applications

for virtual and constructive simulation. This package

includes models of different aeronautical systems and the

environment in which they are inserted. Besides, there are

diverse provisions for the inclusion of distinct behaviors

for the entities modeled.

4.1. Models
4.1.1. Dynamics. Each entity within MIXR can have many

components and systems attached to it. When speaking of

an aircraft, it is fundamental to include in its architecture a

dynamic model. Taking advantage of its level of maturity,

the MIXR development team has taken a decision to uti-

lize JSBSim41 as its primary dynamic model. This was

also because, being open-source, MIXR could not include

dynamic models from EAAGLES, which are classified.

Since JSBSim is also coded in C++ , extending the native

MIXR dynamics class to utilize JSBSim was a rather

straightforward effort. Thanks to C++ and the object-

oriented nature of MIXR and JSBSim, multiple instantia-

tions of JSBSim can be created and utilized within the

same simulation.

The main purpose of a flight dynamics model is to pro-

pagate and track the path of an aircraft over the surface of

the Earth, considering the forces and moments that act on

the vehicle.42 Therefore, there is a need to properly intro-

duce characteristics of the aircraft, as well as the planet’s

(e.g. gravity and rotation rate).

For calculations with regards to translational and angu-

lar accelerations, as well as velocities, JSBSim bases itself

on the formulation presented by Stevens and Lewis.43

Although it is beyond the scope of our work to address this

issue in depth, we acknowledge that JSBSim provides the

necessary basis to support aircraft motion over a rotating,

spherical earth, including effects of rotating mechanisms,

such as engines and propellers, besides steady winds and

turbulence.

Finally, JSBSim supplies a flight control system model,

providing a set of components that can be linked to repre-

sent control laws for an aircraft, what is of paramount

importance for our work.42 These components include

multi-purpose filters, switches, and gains, which together

configure the arbitrary system modeling. Even though the

model provides default values, the control models that we

utilize in the context of this work are a result of efforts

within IEAv’s C4ISR Division toward properly tuning

control parameters in order to achieve higher fidelity out-

comes, which are validated by Brazilian Air Force pilots.

4.1.2. Behavior. Beyond the models that represent how the

aircraft interact physically with the environment and with

each other, there is a need to model how the entities

respond to the stimuli that come from these interactions.
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In the context of military simulation, usually the goal of

autonomous entities is to represent lifelike intelligence,

therefore requiring agents to be able to handle ever-

increasing complex tasks and situations, resulting in both

their design and overall time in development to also grow

considerably.44

Scientists have proposed many artificial intelligence

methods to cope with these increasing complexities that

the simulated scenarios pose in the behavioral standpoint.

However, most of them struggle with blending action out-

puts of behaviors that are acting upon the same entity. This

is because, although having the ability to present simulta-

neous execution of behaviors, usually these behaviors are

coupled with the controller, meaning the behavior itself

performs the action execution of the entity. Thus, there is

no way to combine the action execution of different beha-

viors, what is much desired as it allows for new behaviors

to emerge from existing ones, without the user having to

implement a new predefined behavior, therefore reducing

code complexity.45

We have identified the Unified Behavior Framework

(UBF)46 as an effective means to do this, as the behaviors

in UBF do not execute the action for the agent, instead

they only produce an action object comprised of para-

meters, which user-defined arbiters are able to manipulate

and fuse together.

In the context of UBF, the tasks interpret the perceived

state that comes from sensors that feed the controller,

recommending certain actions to be taken, what every

behavior does by each traversal of the UBF tree.47 By this

method, the UBF tree remains decoupled from the speci-

fics of the entity, enhancing the flexibility of the frame-

work for use in different applications. These actions might

represent small adjustments to the aircraft’s actuators but

are typically more abstract representations, such as vectors

indicating a desired direction and magnitude for the entity

to fly. As such, behaviors can tailor the actions to the

desired effect on the agent, but the details of the actuation

of controls is left to the controller and is therefore not

dealt with inside the UBF tree.46

Therefore, within UBF, we implemented a behavior

according to the proposed formation control approach,

defining the presented equations and furnishing them with

data from the environment. Besides the calculations them-

selves, the behavior generates heading and speed com-

mands, which are then passed to the flight control system

in order to lead the entities to move in a prescribed way.

MIXR framework is responsible to call all these steps

within every simulation frame.

4.2. Test Scenarios

Having presented the mathematical formulation of the pro-

posed approach, as well as some of the characteristics of

the computational environment used for its

implementation, it is appropriate for us to introduce the

scenarios that we utilize to conduct the optimization of the

formation control method. It is important to note that the

goal is to conceive scenarios with characteristics that are

compatible with the reality of the military operations, not

necessarily to explore all existing possibilities.

Scenarios consist of four ASA Fighter aircraft, which

have several subsystems, such as radar, datalink, and radar

warning receiver (RWR). We based the definition of this

number of aircraft on the doctrine of several Air Forces,

such as the characterizations the Joint Chiefs of Staff

(2019) stated, which define that the basic tactical unit in

the Air Force consists of four or more aircraft divided in

two or more elements. We kept constant the general para-

meters to configure each aircraft model throughout the

scenarios. Table 1 shows some of these parameters.

These four aircraft can be initiated anywhere inside a

specified region of the map, which we considered to be

their FAOR (Fighter Area of Responsibility). There is an

assumption that after a combat phase, which places the air-

craft in random positions, they must seek to maximize

their mutual support through formation flying. Besides, the

aircraft have the goal of flying to a predefined waypoint,

which is located outside the limits of the FAOR. We con-

sider this waypoint to be, for instance, an approach fix for

an operating base and treat it as a fixed point throughout

the scenarios.

For scenario generation, there are three variable para-

meters for each aircraft, namely: latitude, longitude, and

heading. All aircraft keep a specific flight level (altitude),

to guarantee level separation. Therefore, trajectory inter-

section (collision) is not a concern. Figure 7 shows some

examples of the utilized scenarios.

Table 1. General parameter values for aircraft model.

Parameter Value

Cruise speed 530 kn
Available fuel 3000 lbs
Wing area 300 ft2

Wingspan 30 ft
Empty weight 17,400 lbs
Bank angle 60�

Figure 7. Scenario examples in the ASA Framework.
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Since each of the four aircraft has three parameters, we

defined each scenario by 12 values. The heading parameter

goes from 0� to 360�, whereas latitude and longitude are

confined to the area shown in Figure 7, varying from 1� N
to 1� S and from 1� E to 1� W, respectively. This repre-

sents a region that is centered in the Earth’s equator, what

guarantees that one degree in latitude and in longitude are

almost equivalent values in kilometers, forming a square

region.

To define values within the prescribed intervals, we uti-

lize the Latin Hypercube Sampling (LHS), a space-filling

technique. LHS is an attempt to ensure that all portions of

the sample space are considered and that each of the input

variables Xk has all portions of its distribution represented

by input values, by dividing the range of each Xk into n

strata of marginal probability 1=n, and sample once from

each stratum.48 Considering the case where each Xi com-

ponent is uniformly distributed over [0, 1] and a sample of

size n is to be selected, first we divide the [0,1] domain of

each Xi, 1 4 i 4 k, into n intervals. The set of all possi-

ble Cartesian products of these intervals constitutes a par-

titioning of the k-dimensional sample space into nk cells.

Then we select n cells from the nk population of cells in

such a way that the projections of the centers of each of

the cells onto each of the k axes yield n distinct points.

Finally, we choose a point at random in each selected cell,

defining the design.49

Certain types of Latin Hypercube Design (LHD) may

be space-filling, while some may not. In order to increase

the multidimensional uniformity of the method, scientists

have proposed some variations based on, for example, the

maximin distance criterion, which is the one we utilized in

our work. This design seeks to maximize the minimum

statistical distance between model inputs, which are post-

processed by the LHS algorithm.50

Bartz-Beielstein, Stork and Zaeffer28 implemented the

minimax LHS algorithm in R51 within the package called

SPOT. Beginning with a random starting point in the

design space and a matrix of randomly generated locations

in the Latin hypercube, we apply the design methodology

by choosing the next point from the matrix of available

locations with the maximum minimum inter-point distance

from the points already included in the design matrix. The

algorithm proceeds by adding one point at a time until the

design matrix has been completely generated, resulting in

an LHS matrix with increased multidimensional

uniformity.

Through the use of this R package, we generated 120

scenarios, which we specify by a set of 12 variables each,

forming a 120 3 12 matrix of input values. This matrix

originally contains numbers in the [0,1] interval, but, after

applying the boundary values for each of the input vari-

ables, they become coherent with the definitions

aforementioned.

Finally, after placing the aircraft within the delimited

area, we set the goal waypoint to a location with latitude

0� N and longitude 3� E, being fixed throughout the sce-

narios, as Figure 7 portrays.

5. Optimization
5.1. General concept

Through an R script, the user can set parameters for the

optimization method, as well as for the scenario genera-

tion, as done through LHS. As we already explained, we

create scenarios stochastically, defining some input para-

meters for the simulations. On the other hand, the optimi-

zation method generates inputs with regards to the

artificial potential fields that are used as control laws for

the simulated entities.

In a conventional SO fashion, as Figure 8 depicts, fol-

lowing this setup phase, the simulation starts, making the

CGF to perform according to the predefined parameters.

After the simulation ends, the system records state data

and shares it with the controlling script, which calculates

the value of the objective function with regards to the spe-

cific run. With this, the optimization method generates a

new set of input parameters, aiming to achieve better val-

ues for the objective function.

We already addressed the scenario generation and the

simulation phases in previous sections; therefore, our focus

now is to delineate how the R script will configure these

processes, as well as to perform the optimization itself,

that is, the optimization method and the function evalua-

tion phases. The configuration is a rather straightforward

phase, with the sole goal of setting parameters for the other

methods.

5.2. Optimization method

Although the ASA Framework allows the inclusion of sto-

chasticity within its models, in the context of this work,

we did not consider any randomness, that is, the models

Figure 8. Conventional simulation optimization approach.
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provide the same output whenever the combination of

input values is the same. This is because the random simu-

lation models that ASA’s team have implemented so far in

the framework are related to weapon effects, which we do

not contemplate in our work. Note that either deterministic

or stochastic designs treat the experiment as a black box,

that is, only input/output (I/O) data are observed. We call

the input values as factors, which can be either a para-

meter of the particular problem (the black box) or of the

optimization algorithm itself, what leads to the following

definition:19

� Algorithm parameters are related to the algorithm,

which should be improved.
� Problem parameters describe the problem to be

solved by the algorithm.

Whereas in real-life experimentation it is hard to vary a

factor over many values; in computer experiments, this

restriction does not apply. As a result, one can observe a

myriad of scenarios—combinations of factor values. One

can use many methods to carefully select these combina-

tions to cope with resource restrictions. A very consoli-

dated technique is the LHS, which we already discussed.

This initial space-filling design, which, in our case, is

the LHD, accounts for box constraints for the inputs. The

simulations performed in ASA provide the information

from the exploration, being configured as a set of scenarios

that are also defined by LHS. The kriging metamodel,

combined with EI, allows for sequentially increasing the

initial design, that is, after it analyzes the observations—so

one can better understand the data generating process—it

selects the next input combination. However, it selects

some combinations to improve the kriging metamodel

(global search), it adds some other combinations because

they seem to be close to the local optimum (local search).19

It gathers the final knowledge from the optimization of the

latest metamodel, which is done through L-BFGS-B,52 a

quasi-Newton method that approximates the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm using a lim-

ited (L) amount of computer memory. Its B version is an

extension to handle simple box constraints on variables.

Figure 9 depicts this adopted optimization strategy.

In order to perform the optimization depicted in Figure

9, we utilize an R package called sequential parameter

optimization toolbox (SPOT).28 This library is a set of

tools for model-based optimization and tuning of algo-

rithms, including surrogate models, optimizers, and DoE

approaches, such as the LHD.

5.3. Initial configuration

We employ the empirical rule of n= 10k, for setting up

the initial configuration. This means that for each input

variable, we generate 10 variations, combining them with

the others. In our case, since we control one variable

related to the formation control approach, namely c, there

would be only 10 samples to be run in the initial design.

However, to better fit the space, we considered an initial

scenario of 30 points, ensuring that we sampled all por-

tions of the input space.

5.4. Function evaluation

From the simulation results, there is a need to define how

we evaluate the objective functions, as Figure 8 states (the

simulation node encompasses this process in Figure 9). In

other words, we must define the metrics that will drive the

optimization process in order to determine which are the

best values for the input parameters. We propose two dif-

ferent approaches: one based in the distances between the

entities and the other based on a goal trajectory geometri-

cally predefined.

5.4.1. Distance-based. To define a robust set of parameters

that would represent the desired formation movement, a

metric we propose is to find the simulation run in which

the sum of the artificial potential forces in every frame is

maximized, as Equation (12) states.

max
XT

t = 0

Xn

i= 1

Xn

j= 1

G
mimj

d(pi, t, pj, t)
2

ð12Þ

This equation is valid for i 6¼ j and has the potential of

anomalies being generated due to the division by zero

(d = 0). This may happen when the entities’ trajectories

cross each other, what is possible due to the level (alti-

tude) separation between them. To avoid the risk of divid-

ing by zero, we rewrite Equation (12) as follows

min
XT

t= 0

Xn

i= 1

Xn

j= 1

d(pi, t, pj, t) ð13Þ

Figure 9. Adopted optimization strategy.
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Therefore, for each simulation run, we calculate the

sum of the distances between each aircraft at any given

instant, with the goal of the optimization process being to

find the set of input parameters that minimizes it. What

Equation (13) tries to find is the simulation run in which

the aircraft fly longer in the closest formation and reach

the goal waypoint in the fastest way.

5.4.2. Trajectory-based. The alternative method we use for

comparison consists of the definition of an analytical tra-

jectory, which is used for the optimization of the artificial

potential field function. We do that through the method of

least squares, which compares the actual trajectory gener-

ated by the artificial potential fields with an analytical tra-

jectory, defining an error value. With this value at hand,

we optimize the parameters of the artificial potential func-

tion with the goal of minimizing the sum of the squares of

the errors at each simulation frame, as Equation (14)

shows.

min
XT

t= 0

Xn

i= 1

pi, t � traj ið Þð Þ2 ð14Þ

The factor traj(i) indicates the trajectory function for

the ith aircraft. Therefore, this method is very dependent

on the analytical trajectory defined at first. Since this defi-

nition is not the main focus of this work, we geometrically

prescribe a very simple path. Basically, it draws a direct

line between each aircraft’s position and the goal way-

point, defining a vector. Then it normalizes these vectors

into versors (unit vectors), being used to calculate an aver-

age between these vectors, which is simply their sum, as

depicted in Figure 10.

In summary, the average between the vectors define a

simplified path, which we use for comparison in relation

to the entities’ trajectories at every time step, according to

Equation (14).

6. Results and analysis
6.1. Description of experiments

We performed the experiments based on scenarios defined

by an LHD, which applies the 10k rule. Since a scenario is

described by three input variables (latitude, longitude, and

heading) for each of the four aircraft, as we previously

stated, 120 scenarios were generated. These scenarios rep-

resent a mission of 15 min, running approximately 33

times faster than reality, yielding an average of 25 s for

each run.

We evaluated each of these scenarios considering

another initial LHD of 30 points, that is, selecting 30

grouping values from 1 to 100, with the SPO methodology

defining 90 more points (grouping values), totaling 120

simulation runs for each of the also 120 scenarios.

Therefore, for each of the four experiments (distance-

based leaderless, distancce-based with leader, trajectory-

based leaderless, and trajectory-based with leader), we

executed 14,400 simulations (120 runs of 120 scenarios),

which took approximately 100 h to complete (more than

4 days). Thus, the total execution time for the presented

results was 17 days, which refers to 57,600 executions.

The simulation ran on a laptop with standard configura-

tions (CPU: Intel Core i7-6820HQ 2.70 GHz; RAM:

16.0GB), which was done due to the operational facet of

our work. Since the main idea is to be able to optimize

behaviors for simulated entities within military scenarios,

this method provided a means to use regular computers,

considering a simulation budget that stays within the avail-

able time constraints. If needed, more powerful machines

may be utilized, which would make the process much

faster.

To illustrate some of these scenarios, we present in

Figure 11 an initial design utilized for one the simulation

runs.

Figure 10. Average between angles, forming a simplified
trajectory.

Figure 11. Example of initial design of an experiment.
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From this initial design, we show in Figures 12 and 13

what two different grouping values generate within our

experimental framework.

As we can visually confirm from Figures 12 and 13, a

larger grouping value caused the aircraft to fly closer to a

formation, even on challenging initial configurations, as

the one Figure 11 depicts. This means that they could exer-

cise a better mutual support for each other, which is our

fundamental goal.

Another important aspect of these illustrations is that

the trajectories the formation control approach generated

were smooth and verisimilar, being regarded as credible

by the Air Force pilots who followed the simulation

execution.

Since we simulated a considerably large number of sce-

narios, it would be too cumbersome to present all runs in a

pictorial way. Instead, in the next section, we present them

in a more concise fashion, averaging the results of various

scenarios.

6.2. Results

For each of the four experiments, we present two charts,

which basically state the inputs and outputs of the simula-

tions on each iteration. Each iteration is a set of 120

executions, which account for each one of the scenarios in

the design. Therefore, each output value represented on

the charts is the average of the metric values for all the

120 scenarios with a given input value (grouping value).

Moreover, we identify the best value of each iteration as

being the suggested grouping value for each metric.

Besides the input and output charts, plotted against the run

number, that is, sequentially, we provide a graph that

relates I/O data to each other, defining an approximate

function to represent the relation between them. The input

is the grouping value, whereas the output is the metric

value.

Both distance-based and trajectory-based metrics can be

either leaderless or with leader. The distance-based metric

aims to minimize the overall pairwise distance, considering

both between aircraft and between aircraft and the goal.

On the contrary, the trajectory-based metric considers a

mean vector between all segments that connect an aircraft

to the goal, computing the sum of the squares of the dis-

tance between each aircraft to this mean vector. We con-

sider the presence of a leader through setting its grouping

value to 0, which means that one of the aircraft does not

consider the others, but only flies to the goal, expecting the

other to adapt to its own trajectory.

6.2.1. Distance-based leaderless. This test case considers

the metric of minimization of the sum of the pairwise dis-

tances at each simulation tick, and regards all aircraft as

equals, that is, there is no hierarchy imposed.

As all of the other charts, the first points of Figure 14

show the pilot design, accounting for an initial investiga-

tion of the search space. With a promising region identi-

fied, the optimization method intensifies the search around

a point with the goal of finding the best value.

In this case, the best value is deemed to be 32,278.0323

with a grouping value of 0.6335. The proximity of this

value to 0 means that the aircraft highly prioritize moving

to goal, instead of flying in formation. Moreover, from the

output side of Figure 14 (green), one can observe that the

initial 30 points from the grouping value LHD are able to

quickly lead the search to values that are close to the one

deemed as the best. However, although the input value

seems to converge, there is a small oscillation of the metric

value (output).

Figure 15 shows that, for this case, increasing the

grouping value (input value), the function value also

increases, what is undesirable. This conclusion reinforces

that this metric prioritizes the move-to-goal behavior,

instead of the formation flying.

6.2.2. Distance-based with leader. In this test case, we con-

sider the same metric as the previous, fixing the grouping

Figure 12. Aircraft trajectory for grouping value of 10. Figure 13. Aircraft trajectory for grouping value of 90.
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value of one aircraft as 0, so that a leader behavior could

have been mimicked.

With the presence of a leader, the best value obtained

was 32,252.9881—being slightly better than the

leaderless—with a grouping value of 0.7213. Figure 16

shows a very similar dispersion, however with a visible

higher dispersion and a lower mean value. Again, there is

an oscillation with respect to the metric value (output).

Figure 14. Distance-based leaderless inputs (grouping value) and outputs (metric value) per simulation run.

Figure 15. Distance-based leaderless I/O data.

Figure 16. Distance-based with leader inputs (grouping value) and outputs (metric value) per simulation run.

Figure 17. Distance-based with leader I/O data.

588 Simulation: Transactions of the Society for Modeling and Simulation International 98(7)



The presence of a leader seems to highly disturb the

function presented in Figure 15, as Figure 17 shows, creat-

ing local minima, which could pose a challenge to the opti-

mization method. Since the sampling method employed

vary according to SPOT parameters, the differences may

not be as evident as the charts showed.

Again, in this case, the optimization process led to a

prioritization of the move-to-goal behavior, which indi-

cates that the metric we adopted did not seem compatible

with the desired mutual support.

6.2.3. Trajectory-based leaderless. We conducted these

experiments with a different metric concept, which consid-

ered the distances between each aircraft to a prespecified

trajectory. This trajectory was a result of the vectorial sum

of versors in the direction that connects each aircraft to the

goal waypoint. Again, there was no hierarchy considered,

that is, all aircraft’s grouping values were subject to the

optimization.

Changing the metric, the dispersions were very different

(Figure 18), with a much lower variance. The input group-

ing value that lead to the best value was 32.1681, which is

way higher than the previous results. This means that, for

this metric, the entities tend to fly more in formation, how-

ever still prioritizing the move-to-goal behavior. The best

metric value (output) generated by the best grouping value

was 0.4761. Differently from the previous two cases, this

one did not have a pronounced oscillation with regards to

the output value.

Figure 19 presents a quite different function if com-

pared with the previous ones, referent to the distance-

based metric. This is because the trajectory-based metric

prioritizes formation flying, when forcing the aircraft to

fly closer to the mean vector to the waypoint.

6.2.4. Trajectory-based with leader. Finally, this set of runs

was based on the same trajectory-based metric, however

with the presence of a leader, which was again represented

by setting the grouping value of one aircraft as 0, forcing

it to ignore the others.

Figure 20 presents a similar dispersion, however with

higher values for both inputs and outputs, leading to an

also higher best value of 0.5394 at 36.6385. This means

that with the presence of a leader, the aircraft flew farther

from each other, although having a larger grouping value.

Again, the output value did not oscillate and was even stea-

dier than the leaderless case.

Similarly to Figure 19, Figure 21 corresponds to a

metric that prioritize formation flying, if compared to the

distance-based metric. Interestingly, the presence of a

leader smooths the function, which is an opposite effect of

what happened with the other charts. Again, this could be

due to the sampling performed through SPOT iterations.

In summary, this metric led to better results with respect

to formation flying, although still giving a lot of weight to

the move-to-goal behavior. This is because, when flying to

the goal, the aircraft already tend to fly close to each other,

since it is the same waypoint for all of them.

Figure 18. Trajectory-based leaderless inputs (grouping value) and outputs (metric value) per simulation run.

Figure 19. Trajectory-based leaderless I/O data.
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6.3. Analysis

To facilitate the analysis, Table 2 presents a summary of

the results, adding the information of the iteration in which

the best results were found. This information is gathered

from the data presented in Figures 14, 16, 18, and 20, with

regards to the minimum output value of each. The first

conclusion that we can draw is that the presence of a

leader does not affect much the cases where the distance-

based metric was utilized. However, when considering the

trajectory-based metric, there is a 13.6% reduction of the

output value.

The reason why this happens is that, in leaderless beha-

vior, all entities tend to fly closer, since none of them are

moving directly to the goal, which is the case when the

leader is present. This leads to a lower optimal grouping

value (input), since the other aircraft do not have to follow

a leader, that is, to compensate their trajectories in a more

significant way. This is not verifiable in the distance-based

case because the grouping values are already too low,

being much less influenced by a null value of one of its

aircraft.

This conclusion indicates that the presence of a leader

may be worse for the formation with respect to the mutual

support, since the leader entity has the liberty to maneuver

as it wishes. At best, the presence of a leader performed in

a similar way to the leaderless case, which reinforces this

conclusion.

With respect to iterations, the distance-based metric

achieved its best value in a faster way, which we explain

by the characteristics of the curves in Figures 15 and 17,

which show an evident global minimum, if compared to

the local minima that occurred. This is not the case in

Figures 19 and 21, since the minima are in a flatter area of

the curves. Therefore, in the performance standpoint, the

first metric is more efficient.

Another conclusion that can be drawn from the sum-

marized data is that the distance-based metric led to a very

dispersed movement of the aircraft. The reason for that

was the large influence that the distances between aircraft

and goal waypoint had on the overall metric value. Since

these distances are much higher than the inter-agent dis-

tances (between aircraft), as a result of the way the initial

scenarios were constructed, the most efficient way to mini-

mize the metric value was to almost fly directly to the

goal.

Figure 20. Trajectory-based with leader inputs (grouping value) and outputs (metric value) per simulation run.

Figure 21. Trajectory-based with leader I/O data.

Table 2. Best I/O data for each experiment.

Experiment Best
input

Best
output

Iteration

Distance-based
leaderless

0.6335 32,278.0323 47

Distance-based
with leader

0.7213 32,252.9881 40

Trajectory-based
leaderless

32.1681 0.4761 77

Trajectory-based
with leader

36.6385 0.5394 106
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On the contrary, the trajectory-based metric forced the

entities to move closer to their mean path to goal, which

naturally led to a closer formation flight. This leads to the

conclusion that the metric may be very influential on the

final results and has to be carefully defined in order to

encompass the main objectives of the mission. There is no

way for the method to correctly prioritize some aspects of

the mission other than relying on precise metrics.

In addition, from the iteration column of Table 2, it can

be seen that the SPOT methodology found the best value

in a very fast way for the distance-based metric, whereas

it took much longer to identify it on the trajectory-based

case. This may be due to the highly unpredictable method

of calculation of this metric, which changes its path at

each frame, likely generating multimodality and even dis-

continuities in the objective function.

From the comparison between Tables 2 and 3, we con-

clude that, in the case of the trajectory-based metric, the

optimization method was capable of identifying an optimal

value that is approximately 27% lower (better) than an

arbitrarily defined grouping value could be (worst case).

When considering the distance-based metric, the reduction

was not so significative, which may be another indication

that this metric does not encompasses some of the problem

complexities, such as aforementioned.

This reduction of the metric value (objective function)

indicates that the use of an optimization method is funda-

mental to determine robust grouping values. Therefore, if

the commander’s intent is to prioritize something other

than mutual support, another metric should be established

and further optimized, most likely generating completely

different input suggestions.

Comparing the moving average trendline (period 2) for

each metric, we see that there are similarities in the gen-

eral profile for both of them pairwise (Figures 22 and 23),

being altered due to the sampling performed throughout

SPOT iterations. This was expected by us, since the

metrics guide the process in the same way, with the enti-

ties behaving in a slightly different way to adapt to the

leader when it is present.

Although the leaderless case indicated that the resem-

blance with the reality is not necessarily better for the enti-

ties’ performance in simulated environments, we deemed

important to confront the results obtained with operational

knowledge within the Air Force. We did that by asking

Brazilian Air Force pilots to check whether the generated

trajectories were compatible with what they see in

practice.

From the pilots’ perspective, the use of artificial poten-

tial fields was able to guide the entities in trajectories that

were very similar to what they would achieve with real

aircraft. The movements were smooth and did not present

instabilities that a more direct control method could gener-

ate. This smoothness was sometimes even better than in

reality, since oftentimes the pilots have to utilize high-

performance maneuvers to adapt to their leader’s move-

ment, with higher accelerations and turn rates.

Since the system performed calculations for each entity

at every simulation frame, the transitions were more subtle

than a human being could do. This is because the machine

is able to perform much more calculations per frame and

that the pilots have much more concerns to think about

during the flight, including their own safety.

Another aspect pointed out by them is that the existence

of a mutual support metric could guide them to fly better.

Figure 22. Moving average trendline for distance-based I/O data: leaderless (left) and with leader (right).

Table 3. Worst I/O data for each experiment.

Experiment Worst input Worst output

Distance-based leaderless 97.1481 33,597.0400
Distance-based with leader 83.3377 32,547.0492
Trajectory-based leaderless 2.3188 0.6525
Trajectory-based with leader 0.6572 0.7383
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During operations, pilots generally must follow their lead-

er’s commands, which are based on the leader’s training

and experience. It is not possible for the leader neither to

precisely determine the best turn rates and accelerations

for each member of its formation, nor to evaluate their tra-

jectories with respect to mutual support. If such a metric

were present in their displays, for instance, they could also

try to adapt to them in a more straightforward way.

We stress that the metrics would have to be carefully

defined and evaluated in order to lead to the correct con-

clusion, even more when speaking of real operations.

Simulations could be used for that purpose, as we propose

in this work. However, the conclusions we achieved are

conditioned to the models within the simulation frame-

work, which are not completely equivalent to the reality

and may generate results that are not exactly what the

pilots would verify if following the very same procedures

while flying.

For instance, the number of degrees of freedom of the

models we used is four, but if they were to perfectly

resemble reality it should be six. That causes the simulated

aircraft to not being able to drift, among many other impli-

cations that can alter their behavior if compared to real

flight. Another example limitation of our approach resides

on the fact that the aircraft might present an oscillation

along its trajectory, as 13 shows. This is a limitation

resulting from the proposed formation control method,

whereas the previous example is related to the simulation

itself.

7. Conclusions and future work

The first conclusion that we can draw from our work is

that the use of artificial potential fields proved itself as an

effective approach to formation flying of fixed-wing mili-

tary aircraft within a simulated scenario. This was evalu-

ated by Brazilian Air Force pilots, who observed the

aircraft behavior resembling what they have seen in real

military operations that involved formation flying.

Artificial potential fields were a simple way to encom-

pass different behaviors, being of relatively easy imple-

mentation if compared to more detailed cognitive models,

as well as less dependent on input data as machine-learning

techniques would be. In addition, their parametrization

allowed for efficiently optimizing the represented behavior

through SO.

Although presenting a computational challenge due to

its high costs (time), the use of simulation as an objective

function allowed for a more applicable set of results, since

they are based on high-fidelity models of military systems.

Even so, using a computer of regular configuration, the

method did not take too long to achieve good results.

With the optimization, we were able to attain 27% gains

relative to one of the metrics utilized (trajectory-based) if

compared to arbitrarily selected parameters (worst case).

However, when considering the other metric, the gains

were much less expressive. That raises the issue of care-

fully selecting the metrics, which guide the optimization

process.

The distance-based metric, which initially seemed to be

a rather straightforward way to evaluate the degree of mis-

sion success—with respect to both formation flying and

moving to goal—proved itself as a less-effective form of

measurement. Since the distances to the goal were higher

than the distance between aircraft, they tended to ignore

each other, flying directly to the objective waypoint. On

the contrary, the trajectory-based metric forced the aircraft

to fly closer to each other, yielding better results. In sum-

mary, we see a need to carefully define the metrics, so that

the results satisfactorily represent the reality.

Nevertheless, sometimes the reality is not necessarily

the goal of artificial intelligence. For instance, as the

results of this work showed, the presence of a leader—

what is the usual within real military operations—caused

the formation to perform in a worse way if compared to

Figure 23. Moving average trendline for trajectory-based I/O data: leaderless (left) and with leader (right).
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the leaderless approach. This is a strength of this kind of

methodologies, which allow analysts to test non-

conventional behaviors and compare them with what is

most often done in reality.

Another strength of the presented approach is that the

utilized computational power can suit the available budget

due to its sequential nature. This grants the flexibility that

decision-makers may need when dealing with urgent mat-

ters that should be simulated as quick as possible.

Finally, since the initial application of artificial poten-

tial fields was mainly made based on empirical para-

meters, an optimization method brought more robustness

to the model. Through the optimization, we were able to

define good parameters that would work for more generic

scenarios.

Future work includes applying the optimization metho-

dology to other military missions in order to better under-

stand its own performance, which could also be optimized

by the same method (SPO). This would require new

metrics, which could be developed for the same problem

addressed as well. For instance, a better way to evaluate

the mutual support would be highly valuable.

Parallelization techniques could also be studied, along

with more complex budget allocation techniques. This is

interesting considering that other scenarios could present

higher levels of complexity with, for instance, weapon’s

effects. Events as such could also lead to more complex

maneuvers, which should be encompassed by the artificial

potential fields or by other movement techniques.
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