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Abstract

The main goal of this work is to investigate how the Sequential Parameter Optimization (SPO) framework performs if compared
with non-sequential approaches. This is of great importance when dealing with expensive black-box functions as is often the
case with regards to simulation optimization. For comparison purposes, well-established metaheuristic methods were applied
to classical test functions, which, although being very fast to evaluate, pose challenges for their optimization. The idea was to
examine whether SPO would outperform the other methods when a smaller amount of function evaluations was utilized, what
could be imposed by budget constraints. Black Hole Optimization, Differential Evolution, and Particle Swarm Optimization were
the metaheuristics selected in our study, being all populational methods that may require a large number of iterations in order to
achieve good results. The conclusion from the conducted analysis shows that SPO, despite being a more expensive method in the
computational standpoint, indeed gets to better results when there is a very limited number of function evaluations available.
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1. Introduction

Experiments have been widely used to study the relationship between a set of inputs to a system and the resulting
outputs. However, many physical processes are difficult or impossible to explore directly by conventional experimen-
tal methods. This may be due to the large costs that can be involved, or even the complexity of the experimental
setting that would be necessary, which could also present excessive risks to the experimenter, or to the system to be
experimented itself.

As computing power has increased, it has become possible to model some of these complex processes by sophisti-
cated computer code. In a similar way to physical experiments, one can vary the inputs to these elaborate sets of code
and observe how the outputs are affected. This process is traditionally called computer experiments and are becoming
increasingly popular surrogates for their physical counterparts [1].

Many of these computer experiments are conducted by simulation, a term that can be defined in several ways
throughout the scientific literature. In the context of our work, we adopt the following definition: a simulation model is
a mathematical model that is converted into a computer program to be solved by means of experimentation. Therefore,
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simulation implies that the analysts do not solve their model through mathematical analysis, instead, they try different
values for the input parameters of their model in order to learn what happens to its outputs [2].

The treatment of simulation outputs often involves their optimization, that is, analysts frequently aim to define
which is the set of inputs that leads to the optimal (maximum or minimum) values of the outputs. However, usually
the size and complexity of the problem prevents a naive application of classical optimization methods. This happens
when there is no closed form for the objective function, what is often the case when simulation is used.

Objective function evaluation via simulation is time-consuming, even if considering the recent advances in com-
puting power. Hence, the traditional approaches to capture the behavior of the objective function would require an
enormous amount of computer time with the simulation software, which could make impractical the use of simulation-
based methods with the goal of optimization. What is needed, therefore, are optimization techniques that utilize a
manageable amount of simulation time and produce optimal or near-optimal solutions [3]. For instance, the Traveling
Salesman Problem, one of the most studied routing problems within the combinatorial optimization field, even though
it comes from a relatively simple idea, finding its solution is NP-Hard, which stimulates the great interest in finding
efficient ways to solve it such as employing heuristics to generate approximate solutions [4].

Many optimization techniques are associated with a refined design of experiments to achieve these solutions.
When dealing with deterministic simulation, these designs do not take more than one observation at any set of inputs,
inasmuch as they would lead to the same results. Moreover, since there is no knowledge with regards to the proper
relationship between the response and inputs, i.e., it is a black-box type of system, designs should allow the fitting of
a variety of models and provide information about all portions of the experimental region, what may be defined as a
space-filling design [1].

This type of design is deemed adequate when the runs of a computer experiment are expensive or time-consuming
so that observing the response at a large number of inputs is not possible. [5] proposed the use of a rule-of-thumb for
determining a reasonable sample size to use in initial designs that consisted of selecting a sample size of 10d when
the input space is of dimension d. This rule-of-thumb was conceived with the goal of providing enough points for a
more accurate initial fitting of the black-box function analyzed, that is, its metamodel, which are also called response
surfaces, surrogates, and emulators.

As defined by [2], a metamodel is an approximation of the input/output (I/O) function that is defined by the
underlying simulation model. A recent type of metamodel that is gaining popularity in simulation is called Kriging,
which was introduced as a metamodel for simulation models in [6]. One of its advantages over traditional polynomial
regression metamodels is that Kriging is a global model, instead of local. It is used for prediction with the final goal
of optimization.

A very well-known sequential optimization method called Efficient Global Optimization (EGO), uses a global
Kriging metamodel to predict the output of a new point, which is done through the maximization of the Expected
Improvement (EI), comparing this new point and the best point that was found so far. Then a new Kriging metamodel
is fitted to the old I/O data and the new point I/O. This is done as long as there is still computer budget available [5].

Sequential approaches are widely used in the simulation optimization realm, enabling the analysts to learn about
the I/O behavior of the simulated system as data is collected, that is, before having to decide on the next input com-
bination to be simulated. [7] described a framework that generalizes these types of approaches, called Sequential
Parameter Optimization (SPO). Although this method was initially conceived for tuning the parameters of optimiza-
tion methods, it can be used for general optimization as well. It uses the available budget sequentially, i.e., the
information from the exploration of the search space guides the search by building a metamodel. Then, it chooses
new design points based on predictions from the metamodel, which is refined stepwise to improve knowledge about
the search space [7].

Our work aims to compare the use of this framework with traditional optimization techniques, when dealing with
a very limited number of possible objective function evaluations. Although the experiments were conducted with very
fast test functions, the idea was to check if better results could be reached with less iterations by the use of a sequential
approach. It is important to note that classical test functions, also called artificial landscapes, seldomly correspond to
real-world problems, since their main objective is to test the optimization methods in most extreme conditions. Thus,
the fitting of these functions by metamodels is often hindered by their harsh properties, which can vary in terms of
features like modality, basins, valleys, separability, and dimensionality.

The comparison is done through the use of RStudio and LOF, a framework developed by the Brazilian Air Force’s
Institute of Advanced Studies (IEAv). This framework has implementations of Black Hole Optimization (BHO)
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and Particle Swarm Optimization (PSO), as well as the test functions employed (Ackley, Griewank, Sphere, and
Zakharov). On the other hand, RStudio was utilized for the configuration of SPO, through a package called SPOT
(Sequential Parameter Optimization Toolbox), and for the handling of Differential Optimization, which is also the
optimizer of the Kriging model within SPOT.

The paper is organized as follows. Section 2 gives a brief overview of the methods utilized, as well as the test
functions selected. Section 3 provides the methodology employed for comparing the optimization methods consid-
ered. Section 4 presents the results obtained from the optimization of the benchmark functions. Section 5 summarizes
the paper, pointing to the next steps to be taken.

2. Background

This section introduces a series of optimization methods that we used in our comparison, applied to some well-
established test functions. Additionally, we present the software tools that provide what is needed for performing the
proposed experiments.

2.1. Optimization Methods

Besides the description of the non-sequential optimization methods that we selected for comparison, in this sub-
section we provide an overview of SPO, as well as a brief characterization of the employed test functions.

2.1.1. Sequential Parameter Optimization (SPO)
SPO is a framework based on active experimentation that aims to test some hypotheses, according to the following
procedure [8]:

1. Select a model F (e.g., through kriging) to describe a functional relationship;
2. Select an experimental design, e.g., Latin Hypercube Design (LHD);

3. Generate data, i.e., perform simulation experiments; and

4. Refine the model until the hypothesis can be accepted/rejected.

It was proposed by [7] to efficiently design metaheuritics, being also applicable as an optimization method in
itself. This approach has its origins in Design of Experiments (DOE) [9] and in Design and Analysis of Computational
Experiments (DACE) [10].

SPO uses the available budget sequentially, i.e., it uses information from the exploration of the search space to
guide the search by building a metamodel (e.g. kriging). After that, it chooses new design points based on predictions
(e.g. expected improvement) from the metamodel. Thus, it refines the metamodel stepwise to improve knowledge
about the search space [11]. Its main goal is to ease the burden of objective function evaluations, when a single
evaluation requires a significant amount of resources, which is not the case when testing benchmark functions, but
frequently happens in the context of simulation optimization. Metamodel-based optimization is considered to be a
relatively efficient optimization method when compared with other optimization techniques [12]. To achieve that, it
often relies on balancing the search within the local area of the current optimum and the entire sample space, which
may be done sequentially, through the evaluation of the expected improvement, for instance[13].

In summary, the process is done from an initial space-filling design, which, in our case, is the Latin hypercube,
accounting for box constraints for the inputs. The information from the exploration is provided by the test functions.
The kriging metamodel, combined with EI, allows for sequentially increase the initial design, i.e., after the benchmark
functions are evaluated the next input combination is selected. Whereas some combinations are selected to improve
the kriging metamodel (global search), some other combinations are added because they seem to be close to the
local optimum (local search) [7]. The final knowledge is gathered from the optimization of the latest metamodel,
which is done through L-BFGS-B [14], which is a quasi-Newton method that approximates the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm using a limited (L) amount of computer memory. Its B version is an extension to
handle simple box constraints on variables. This method can be substituted by another optimization technique, such
as Differential Evolution.
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2.1.2. Differential Evolution (DE)

DE is an Evolutionary Algorithm (EA), that is, it relies on mutation, recombination and selection to evolve a col-
lection of trial solutions (population) towards an optimal state. It was firstly proposed by [15] for global optimization
of continuous and discrete numerical variables.

The individual candidate solutions within DE are called parameter vectors or genomes. The algorithm operates
through the same computational steps as employed by a standard EA. However, as a particularity, DE employs the
difference of the parameter vectors to explore the objective function landscape. Therefore, its recombination technique
involves the creation of new candidate solution components based on the weighted difference between two randomly
selected population members added to a third population member, what perturbs population members relative to the
spread of the broader population [16].

As mentioned in Section 2.1.1, DE is often utilized in the context of SPO. As an example, [17] demonstrate that
particle swarm optimization based approaches were outperformed by differential evolution. If compared to previous
results, their approach required only one tenth of the number of function evaluations [7].

2.1.3. Particle Swarm Optimization (PSO)

The PSO is inspired by the social behavior of animals, such as bird flocking and fish schooling. Its algorithms were
originally introduced by [18] to find global minimum of functions. They utilize the Reynolds model of flocking [19] to
evolve the existing solution generation to a new one until the best value is identified. It initiates from a user-specified
number of starting values, called particles, while the collection of all the particles is called a swarm.

Each particle has a certain position and velocity, which is used to obtain the enhancement of the global best
solution, what is done when the PSO adds this velocity to the particle position. If the best local solution has a
lower fitness value than the fitness of the current global solution, then the best local solution replaces the best global
solution [20]. PSO can be easily implemented and it does not require much computational power, such as memory
and CPU. Moreover, it does not require gradient information with regards to the objective function, but only function
values [1].

2.1.4. Black Hole Optimization (BHO)

BHO is a population-based algorithm that, as done in many other populational methods, generates populations
of candidate solutions within the search space. In this particular method, the evolving of the population is done by
moving all trial solutions towards the best value in each iteration, which is defined as the black hole, and replacing
those candidates that enter within the range of the black hole by newly created candidates in the search space [21].

Therefore, the black hole may change at each iteration, as a new best candidate is found, while the other members
of the population are considered as regular stars. Similarly to PSO, the stars move during the optimization process,
however, this is done only towards the best solution, acting as an intensification mechanism. The exploration of the
search space is done through the rebirth of stars, which often happens at the boundaries of the search space.

2.2. Test Functions

There are many benchmark functions used to evaluate the performance of optimization techniques. We have
selected four 2-dimensional functions. Besides, although they are all scalable, differentiable, and continuous, there
are some variations between them with regards to modality and separability. Fig. 1 presents a bidimensional plot of
these functions, whereas the next section describe some of their main characteristics.

All functions have dimension n and present a minimum value of 0 in its global minimum point, which is always
(0,0, ...,0). The dominion of the functions are different, being showed in Table 1, which also presents the classification
with respect to their modes.

2.2.1. Ackley [22]

The Ackley function is a non-convex function characterized by a nearly flat outer region and a large hole at
the center. Its many local minima pose a risk for optimization algorithms to be trapped in, a common feature for
multimodal functions. In addition, it is a non-separable function expressed by equation 1.
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Figure 1. 2D plots of the selected test functions.
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Table 1. Dominions and modalities of the test functions.

Name Dominion Modality

Ackley [—32.768,32.768]" Multimodal
Griewank [-600.0, 600.0]" Multimodal

Sphere [-100.0, 100.0]" Unimodal
Zakharov [-5.0,10.0]" Unimodal

2.2.2. Griewank [23]
The Griewank function also has many local minima that are widespread in a regular fashion, what characterizes it
as a multimodal function. It is non-separable as well, being defined by equation 2.

xl.2 L X;
4000_1:[“)8(%) 2

f(xl,Xz,.-.,xn)=1+Z
i=1

2.2.3. Sphere
Alternatively, sphere is a unimodal function, as well as separable. It has the simplest mathematical expression
when compared with the other benchmark functions, being defined in equation 3.

n

f(xl,xz,...,xn)=2xi2 3)

i=1

2.2.4. Zakharov [24]
The Zakharov function has no local minima besides the global one, which characterizes it as an unimodal function.
It is a non-separable function expressed by equation 4.

n n 2 n 4
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2.3. Optimization Tools

There are two software solutions that we used to support our experimentation. They are environments that lever-
ages several packages that implement the optimization methods aforementioned in different forms and programming
languages.

2.3.1. RStudio

RStudio is an integrated development environment for the statistical computing and graphics language R. It pro-
vides a console, syntax-highlighting editor that supports direct code execution, and tools for plotting, history, debug-
ging and workspace management [25]. R packages can be loaded into the environment, making available diverse tools
for the most variate purposes, such as the one presented as follows, which were utilized in the context of this work.

e SPOT [8]: A setoftools for SPO utilization. It includes surrogate models, optimizers and design of experiment
approaches. The main goal is to ease the burden of objective function evaluations, when a single evaluation
requires a significant amount of resources.

e DEoptim [26]: Implementation of the differential evolution algorithm for global optimization of a real-valued
function with a real-valued parameter vector. It is widely used in diverse domains.

e soobench [27]: Collection of different single objective test functions useful for benchmarks and algo-
rithm development. The package includes the following functions: Ackley, BBOB 2009, Branon, Ellipsoidal,
Goldstein-Price, Griewank, Kotancheck, Mexican hat, Rastrigin, Rosenbrock, Sphere, and Weierstrass.
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e metaheuristicOpt [28]: A comprehensive implementation of metaheuristic algorithms for continuous op-
timization. Currently, the package contains the implementations of 21 algorithms: particle swarm optimization,
ant lion optimizer, grey wolf optimizer, dragonfly algorithm, firefly algorithm, genetic algorithm, grasshop-
per optimization algorithm, harmony search algorithm, moth flame optimizer, sine cosine algorithm, whale
optimization algorithm, clonal selection algorithm, differential evolution, shuffled frog leaping, cat swarm opti-
mization, artificial bee colony algorithm, krill-herd algorithm, cuckoo search, bat algorithm, gravitational based
search, and black hole optimization.

2.3.2. LOF

LOF is the acronym for LEV Optimization Framework, which is a software developed by the Institute for Ad-
vanced Studies’ Virtual Engineering Lab — Laboratorio de Engenharia Virtual in Portuguese. Its aim is to provide
solution to general computational optimization problems. This is done through a library of metaheuristics for gen-
eral application, being parametrized through a graphic user interface, which also provides tools for monitoring the
results [29].

The framework is utilized to crosscheck the results obtained through RSudio with respect to BHO and PSO,
ensuring that the differences in the algorithms’ performance are not implementation issues. Besides, the framework
provide more data with respect to the optimization execution than what is provided by the packages in R.

3. Test Methodology

With the tools presented in Section 2.3, the testing of the optimization methods to solve the benchmark functions
described in Section 2.2 was a rather straightforward effort. With the exception of Zakharov function, all the others
were already available on package soobench, making any experimentation in R just a matter of properly parametriz-
ing the optimization techniques. Within the LOF framework, all functions were available, as well as BHO and PSO
metaheuristics.

The testing consisted on running SPOT, DE, BHO, and PSO with 400 and 100 functions evaluations for all test
problems three times. In addition SPOT was run three times with only 20 evaluations, to test the method in such an
extreme configuration. All methods were primarily ran in RStudio, with LOF being used to crosscheck the optimal
values obtained from BHO and PSO. The inspection of results coming from DE was conducted by the package
metaheuristicOpt function, since the initial runs were handled by the package DEoptim, which is an alternative
for SPOT, instead of the L-BFGS-B method utilized.

For crosschecking, the average value for each group of three runs of all possible combinations of metaheuristics
and test functions was considered. These values were compared with a single run from the alternative solution. It is
important to note that all parameters available for each particular metaheuristic were kept constant throughout their
use, with the exception of the number of function evaluations, which was compatible among the same kinds of runs.

The parameters considered for each method were defined as presented in Table2. For a better understanding of the
stated parameters, refer to the cited papers with respect to each method or to the package metaheuristicOpt.

For the SPO, the initial LHD points varied according to the number of function evaluations considered, what is
stated in Table 3.

4. Results and Discussion

In the next sections (4.1, 4.2 and 4.3) we present the obtained results according to the R package utilized to
calculate them. After that, the results for crosschecking are presented in section 4.4, whereas the comparison of the
results is made in section 4.5.

4.1. BHO and PSO results (metaheuristicOpt)

Table 4 outlines the average results — from the three runs performed — obtained in RStudio through the use of
its package metaheuristicOpt, which has implementations of the BHO and the PSO methods. When considering
the same number of function evaluations, BHO presented better results than PSO for all benchmark functions con-
sidered, with the exception of Zakharov, when 100 points were evaluated. For Griewank and Sphere functions, BHO

outperformed PSO even when evaluating four times less objective functions.
7
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Table 2. Parameters for the optimization methods.

Method Parameter Value
BHO Population 20
Population 20
Inertia weight 0.729
PSO Group cognitive 1.49445
Individual cognitive 1.49445
Maximum velocity 2
Population 20
Mutation 0.8
DE Crossover 0.5
Strategy DE/local-to-best/1/bin
SPO Target Expected Improvement
Model DACE Kriging

Table 3. LHD points for SPO runs.

Function evaluations LHD points

400 100
100 25
20 5

4.2. DE results (DEoptim)

The results from the DE method, implemented in R by ‘DEoptim’ package, are showed in Table 5. As expected,
increasing the number of function evaluations proved to reach better results. However, the differences between 400
and 100 are only from 1 to 3 orders of magnitude.

4.3. SPO results (SPOT)

SPO presented similar results if compared to the other methods presented so far, as Table 6 displays. A very
noticeable fact is that, in all cases with 100 function evaluations, SPO provided the best result. On the other hand,
when 400 evaluations are performed, SPO lies behind almost every other method. Interestingly, if we compare SPO
with 400 evaluations with SPO with 100 evaluations, the optimal values are very similar to each other, even though
the computational time to achieve the larger number is way longer than the other.

Fig. 2 depicts the SPO method evolution for 400 evaluations applied to all four benchmark functions considered.

4.4. Crosscheck

As Table 6 demonstrates, for most of the cases, results obtained by LOF were better than the ones from RStu-
dio. This may indicate that the implementation was optimized, which could also be influenced by the programming
language utilizes — C++ in LOF and R in RStudio. DE results were very similar with each other, which was also
expected since they are just different R implementations.

4.5. Comparison

The results presented in the previous sections point to a very satisfactory performance of the SPO method. With
a reduced computational budget, such as the 100 evaluations represented, SPO outperformed the other methods up to
four orders of magnitude, that is a result 1000 times more precise. It is interesting to state that, for a larger number

8
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Table 4. BHO and PSO results.

Evaluations 400 100
Function BHO PSO BHO PSO
Ackley 2.00E-02 2.56E-01 1.86E+00 6.16E+00
Griewank 7.65E-02 4.06E+00 3.15E-01 4.16E+00
Sphere 3.34E-01 9.02E+01 5.73E+00 6.00E+02
Zakharov 4.12E-06 7.85E-04 1.36E-01 7.03E-02
Table 5. DE results.
Evaluations

Function 400 100

Ackley 1,87E-01  7,36E+00

Griewank 6,76E-02 9,05E-01

Sphere 1,68E-02 2,90E+01

Zakharov 1,88E-04 6,57E-02

of evaluations, SPO, besides being much slower, provides worst results for practically all benchmark functions if
compared to any of the other methods.

Another interesting comparison was made between SPO with 400 and 100 evaluations. The results obtained were
very close to each other, that is, the higher number of iterations did not provide much improvement in the results
achieved. However, when only 20 evaluations were performed, the quality of the results decreased significantly,
although being still fairly close to the results obtained with 100 evaluations of the other methods.

5. Conclusions

This work aimed to verify if SPO would present itself as a proper alternative to classical optimization methods
when the studied objective function is expensive and there is a restricted computational budget available. As the results
showed, for a reduced number of function evaluations, SPO was indeed the best option, providing better results in all
cases that had only 100 iterations.

It is also important to note that SPO has a more flexible budget management, since it is a sequential method, which
can be of great advantage in the context of simulation optimization. If the analyst understands that a higher number
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Figure 2. SPO method evolution (400 evaluations).
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Table 6. DE results.

Evaluations
Function 400 100 20
Ackley 1,89E-01 7,96E-03 5,44E+00
Griewank 2,16E-01 2,16E-01 1,45E+00
Sphere 2,03E-02 7,42E-02 6,67E+01
Zakharov  1,03E-02 1,74E-02 2,31E+00

of function evaluations is needed, SPO is easily extensible to include complementary points.

In summary, although optimization methods may perform in very different ways according to the problem to be
solved, this work shows that a specific method may better cope with some of the constraints that may exist, when
the evaluated function is too costly. Further studies could include other sequential methods for comparison purposes,
which could perform even better than SPO.
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