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ABSTRACT Beyond Visual Range (BVR) air combat is an essential part of modern aerial warfare,
relying on advanced radar, missile systems, and decision-support technologies. This survey provides a
comprehensive overview of how simulation and Machine Learning (ML) tools have been used to analyze
BVR combat, covering key methodologies, applications, and challenges. We examine how ML enables
adaptive tactics to improve behavior recognition and threat assessment to enhance situational awareness.
The paper also traces the historical evolution of BVR combat, outlining key engagement phases such
as detection, missile launch, and post-engagement assessment. A key focus is on the role of simulation
environments in modeling realistic combat scenarios, supporting pilot training, and validating AI-driven
decision-making strategies. We analyze state-of-the-art simulation tools, comparing their capabilities and
limitations for studyingmulti-agent coordination and real-time adaptability. This survey’s main contributions
include descriptions of ML applications in BVR air combat, evaluations of simulation tools, identifications
of research gaps, and insights into future research directions. This work provides an overview of how
traditional simulation approaches merge with artificial intelligence to enable advanced, effective human and
autonomous decision-making systems in dynamic and contested environments.

INDEX TERMS Beyond visual range air combat, machine learning, modeling, simulation.

I. INTRODUCTION
Beyond Visual Range (BVR) air combat is a key component
of modern aerial warfare, characterized by engagements
occurring at distances beyond the pilot’s visual sight [1].
It relies heavily on advanced radar systems, long-range
missiles, and detection and tracking methods to neutralize
adversaries before visual contact [2]. As the nature of
air combat evolves, BVR engagements have grown in
importance, demanding innovative approaches to overcome
the challenges posed by long-range confrontations. The
strategic significance of BVR air combat lies in its ability to
allow forces to strike first while maintaining a tactical advan-
tage [3]. However, the complexity of these engagements
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requires interdisciplinary technologies – including sensor
fusion, target tracking, decision-making algorithms, and
missile guidance systems [4], [5] – to improve engagement
effectiveness, ensure mission success, and enhance pilot
Situational Awareness (SA) [6].

Within Visual Range (WVR) air combat engagements
occur within relatively short ranges, often involving
close-range dogfighting maneuvers reliant on agility, speed,
and aiming precision [7], [8]. In contrast, BVR engagements
leverage advanced sensors and long-range missiles to
outperform adversaries [9]. Despite this difference, BVR
scenarios can transition into WVR combat as aircraft close
in, requiring capabilities in both domains [10], [11].
This survey comprehensively overviews state-of-the-art

methods and technologies in BVR combat, highlighting
recent advancements and strategic approaches. It begins with

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 1

https://orcid.org/0000-0001-9768-2340
https://orcid.org/0000-0003-0300-8027
https://orcid.org/0000-0001-8796-8230
https://orcid.org/0000-0002-7714-928X
https://orcid.org/0000-0002-3333-8142


A. N. Costa et al.: Simulation and Machine Learning in Beyond Visual Range Air Combat: A Survey

a historical overview of BVR combat, tracing its evolution
from early Air-to-Air Missile (AAM) systems to modern
multi-sensor platforms. This perspective highlights key
technological advancements and their impact on engagement
strategies. Next, we examine the core phases of BVR
engagements, including detection, missile launch, support,
and evasive maneuvers, illustrating how methods discussed
in this survey contribute to operational effectiveness. We then
review key methodological approaches, such as Machine
Learning (ML) algorithms for adaptive decision-making in
dynamic environments and the role of Artificial Intelligence
(AI) in engagements and autonomous tactics. Practical
applications range from pilot decision-support systems
to Unmanned Aerial Vehicles (UAV) operations. Finally,
we highlight the importance of simulation tools in tactical
development, pilot training, and algorithm validation. Both
general-purpose and specialized platforms are discussed in
the context of modeling complex combat scenarios.

To our knowledge, this is the first dedicated survey that
examines simulation and ML applications in BVR combat.
Existing reviews on air combat either provide a more general
overview or mention BVR only as a secondary topic [12],
[13], [14], [15], [16], [17], [18]. Most discussions on ML for
long-range engagements are limited to related work sections
of individual papers, offering only partial insights without
a structured synthesis of methodologies and applications.
Unlike previous works, this survey covers research across
multiple studies, providing a comprehensive perspective
on how ML and simulation enhance decision-making and
engagement strategies. In addition, we analyze available
simulation tools, highlighting their capabilities, limitations,
and suitability for different applications. In this work, we also
identify open challenges and research gaps that remain
unexplored, offering guidance for future studies.

The key contributions of this survey are:
• A comprehensive review of ML methodologies applied
to BVR, detailing their role in decision-making and
autonomous tactics

• An analysis of simulation tools, comparing their capa-
bilities and limitations for modeling realistic combat
scenarios

• Identification of key challenges in integrating ML and
simulation for improved tactical decision-making

• A perspective on research trends, outlining open ques-
tions and guiding future advancements in the field

A. A BRIEF HISTORY OF BVR AIR COMBAT
The origins of BVR air combat trace back to the Cold
War, an era defined by rapid technological innovation and
an escalating arms race. Early radar-guided missiles, such
as the AIM-7 Sparrow, provided the first glimpse of long-
range engagements, allowing pilots to strike adversaries from
unprecedented distances [19]. However, these early systems
suffered from limited accuracy and vulnerability to Electronic
Countermeasures (ECM), leading to mixed performance
outcomes in real-world scenarios [20].

In the 1960s and 1970s, the United States and the
Soviet Union invested heavily in BVR capabilities, creating
more sophisticated missile systems and advanced radar
technologies. The AIM-54 Phoenix missile, used by the U.S.
Navy’s F-14 Tomcat, was one of the first missile systems
capable of simultaneously engaging multiple targets at long
ranges, contributing to a shift in air combat doctrine [21]. This
missile was designed to provide air defense against Soviet
bombers and their anti-ship missiles, significantly extending
the engagement envelope of carrier-based aircraft [22].
The introduction of the AIM-54 Phoenix marked a key
moment in BVR combat, highlighting the potential of
long-range engagements [23]. However, the missile’s large
size and weight and reliance on inertial navigation and
semi-active radar homing during the initial and midcourse
phases presented operational challenges [24]. Despite these
drawbacks, the Phoenix’s range and speed made it an
important weapon in the U.S. Navy’s arsenal [25].

The 1980s and 1990s brought transformative progress
with the introduction of the AIM-120 AMRAAM (Advanced
Medium-Range Air-to-Air Missile). The AMRAAM’s active
radar homing capability enabled ‘‘fire-and-forget’’ tactics,
allowing pilots to launch and then maneuver without main-
taining radar lock, reducing their exposure to threats [24],
[26]. Its compact size, compatibility with various platforms,
and enhanced resistance to ECM made it a versatile and
reliable weapon [27]. The adoption of the AMRAAM by
NATO forces highlighted the need for compatible systems
and common tactics in multinational operations [28].

In the 21st century, advancements in radar, Electronic
Warfare (EW), and missile technology have significantly
influenced BVR combat. Modern platforms like the F-22
Raptor and F-35 Lightning II utilize Active Electronically
Scanned Array (AESA) radars, low-observable (stealth)
airframes, and advanced sensor fusion systems to avoid detec-
tion and improve SA [22], [29], [30], [31]. Data links and
network-centric warfare features further support coordination
and target-sharing among allied forces, facilitating adaptive
engagement strategies [32], [33]. EW has also played a
pivotal role in shaping BVR tactics. Modern aircraft employ
advanced countermeasures to disrupt enemy systems and
protect themselves from incoming threats [34].

Looking ahead, the future of BVR combat will be driven
by technological breakthroughs such as hypersonic missiles,
which promise extended engagement ranges and drasti-
cally reduced reaction times [35]. Additionally, integrating
AI and autonomous systems is expected to revolutionize
BVR engagements. Unmanned platforms collaborating with
human pilots can enhance decision-making, improve SA, and
reduce operational risks [36], [37].

B. PHASES OF BVR AIR COMBAT
The phases of BVR air combat (Figure 1) consist of
the following steps: detection, threat assessment, tactical
maneuvering, missile engagement, and post-engagement
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FIGURE 1. Phases of BVR air combat.

assessment. Advances in sensor technology, AI, and construc-
tive simulations have significantly enhanced these phases,
leading to more effective air combat strategies [38].

1) DETECTION AND IDENTIFICATION
The first phase of BVR combat is detecting and identifying
enemy aircraft using advanced radar systems. These systems
enable long-range target detection, allowing pilots to identify
threats well before visual contact [10]. Typically, the process
begins when an aircraft enters hostile airspace; radar systems
are activated to search for opponents, eventually locking
onto a detected target [39]. This early detection is critical
to achieving a strategic advantage by enabling preemptive
actions [40].

2) THREAT ASSESSMENT AND TARGET ASSIGNMENT
Once targets are detected, the next phase involves assessing
their threat level and selecting the primary target for
engagement. This decision-making process combines human
expertise with increasingly sophisticated AI-driven systems.
Methods such as Bayesian optimization and Artificial
Neural Networks (ANN) have been developed to enhance
decision-making [38]. Effective target selection is essential,
as it dictates subsequent engagement strategies and directly
influences mission outcomes [40].

3) TACTICAL MANEUVERING
Following target selection, aircraft perform tactical maneu-
vers to achieve optimal missile launch positions while
evading enemy threats. This phase may include coor-
dinated formations and adaptive flight maneuvers [41].
Tactical decisions involve balancing offensive positioning,
evasion techniques, and maintaining favorable missile launch
parameters [42]. Aircraft may perform specific maneuvers,
such as cranking, to confuse enemy sensors and minimize
exposure [43]. AI and ML have further refined these tactics,
enabling complex, autonomous behaviors in simulations [44].

4) MISSILE LAUNCH AND ENGAGEMENT
The engagement phase is often divided into three stages:
(I) Launch phase: Themissile is fired once the target enters

the Weapon Engagement Zone (WEZ). At this stage,
missiles may rely on initial guidance from the aircraft
or transition directly to onboard sensors [45].

(II) Midcourse support phase: During this stage, the
missile advances toward the target while the launching
aircraft reduces its exposure to threats. Depending on
the missile type, the aircraft may provide midcourse
guidance, or the missile may operate autonomously
using its internal systems [45].

(III) Terminal phase: In the final stage, the missile activates
its onboard sensors to track and intercept the target
autonomously. Modern ‘‘fire-and-forget’’ missiles excel
in this phase, as they minimize the need for ongoing
guidance, allowing the pilot to reposition or prepare for
subsequent engagements [10], [40].

Effective missile engagement strategies weigh the proba-
bility of successfully neutralizing the target against the risk
to the launching aircraft, making this phase decisive for
determining BVR combat outcomes [46].

5) POST-ENGAGEMENT ASSESSMENT
The final phase involves assessing the outcome of the engage-
ment to determine if additional actions are required. This
assessment includes verifying the destruction of the target,
re-evaluating the tactical situation, and planning subsequent
maneuvers [42]. Although sometimes underestimated, post-
engagement assessment is essential for ensuring mission
success and preparing for future engagements [47].

C. OVERVIEW
This survey is based on an extensive literature review con-
ducted using Google Scholar1 with the keywords ‘‘Beyond
Visual Range’’ or ‘‘BVR’’. The focus was on papers written
in English and published within the past decade. Initially,
357 papers containing these terms were identified. After
a detailed evaluation, papers that were not in English or
only referenced BVR without contributing with substantive
research to the field (e.g., citing another work with BVR in
the title) were excluded. As of September 27, 2024, the final
dataset comprised 120 papers, as summarized in Table 1.

All papers were classified according to both their primary
methodology and application area, and this structure is
consistently used throughout the paper. While many studies
incorporate multiple methodologies or cover several appli-
cation domains, each was assigned to the most prominent
category in each classification. Since the terminology used
for these categories may vary across the literature, we begin
each corresponding section with a clarification of how the
term is defined in the context of this survey.

Figure 2 illustrates the distribution of papers by year,
highlighting the trend in research interest over the past

1https://scholar.google.com
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decade. The data reveals an upward trajectory in the number
of publications related to BVR air combat, particularly in
recent years, highlighting the growing relevance of the topic.
The lowest number of publications was recorded in 2017,
with just one work, while the highest occurred in 2022 and
2023, with 23 works each. It is worth noting that the lower
count for 2024 likely reflects the incomplete availability of
papers for this year at the time of this study.

FIGURE 2. Number of articles published per year related to BVR air
combat research.

The remainder of this paper is organized as follows. The
application areas in the context of BVR air combat are
presented in Section II. The methodologies applied to solve
problems related to these application areas are described
in Section III. Section IV presents simulation environments
and tools that have been used to study BVR air combat
problems. Section V describes open challenges regarding
BVR air combat simulations. Conclusions of this work are
presented in Section VI.

II. APPLICATIONS
BVR air combat research covers a diverse set of applications,
ranging from autonomous decision-making to multi-agent
coordination and pilot training. This section categorizes
recent developments across these domains, focusing on
how emerging technologies and methods improve tactical
performance, adaptability, and mission outcomes.

A. AUTONOMOUS DECISION-MAKING
Autonomous decision-making involves analyzing, selecting,
and executing actions that enhance situational control and
combat effectiveness. Various approaches were proposed
to support this capability, focusing on how agents model
tactical behaviors, perform Goal Reasoning (GR), and assist
or replace human pilots in complex scenarios.

A reduction method of tactic features based on granular
computing was proposed in [61]. In [15] and [52], authors
explored behavior modeling in the context of Computer Gen-
erated Forces (CGFs) and GR, enabling autonomous systems
to make adaptable tactical decisions in rapidly changing
scenarios. These capabilities supported the development of

autonomous air combat agents that can complement human
pilots by taking on specific tasks, such as threat engagement
or support maneuvers. Along these lines, [48] developed a
system designed to assist pilots by generating tactical fight
strategies.

In [49], a Genetic Programming (GP) framework was
presented to discover novel behaviors in air combat scenarios,
contributing to more adaptable and unpredictable combat
tactics. Furthermore, [50], [51] used grammatical evolution
to generate adaptive CGFs and Human Behavior Models
(HBMs), improving realism and adaptability in training
simulations.

The work elaborated in [12] analyzed the UAV air
combat decision process, dividing it into four decision-
making phases: situation assessment, attack arrangement,
goal assignment, and maneuvering decision. Furthermore,
in [2], pilot knowledge was used to create a hierarchical
framework that divided air combat into several sub-decision-
making systems.

A review of Deep Reinforcement Learning (DRL)methods
applied to BVR air combat situations was presented in [17].
The autonomous learning of new tactics was addressed
in [57], considering a high-fidelity air combat simulation
environment. In [53], an agent based on DRL was devel-
oped, being capable of simulating fighter aircraft tactics
through self-play, generating novel air combat strategies. This
approach enabled human pilots to interact with AI-trained
agents, improving their decision-making and adaptability.
In [58], a Reinforcement Learning (RL) environment was
created aiming at autonomous learning of new air combat
tactics and the discovery of new maneuvers.

Many studies also employed RL in one-on-one combat
scenarios. For instance, [54] proposed a self-play training
framework to address the action control problem in long-
horizon engagements. Research in [55] introduced a DRL-
based decision-making algorithm with tailored state and
action spaces and an adaptive reward function, demonstrating
robustness across diverse confrontation scenarios. In [59],
an improved Q-network enhanced maneuvering decisions by
enabling agents to approach opponents from advantageous
positions. Similarly, [56] presented a DRL-based agent con-
struction method grounded in realistic weapon simulation.
Finally, [60] developed a hybrid self-play DRL agent capable
of maintaining high win rates against a variety of opponents,
improving both adaptability and performance.

B. BEHAVIOR RECOGNITION
Behavior recognition is important for understanding and
predicting the actions of adversarial agents, informing
decision-making, and strategic planning. Several studies
explored methods to recognize and predict enemy behaviors
under complex and uncertain combat conditions.

An integrated planning and recognition algorithm in [62]
showed that proactive observation gathering accelerates
behavior classification. Building on Case-Based Reasoning
(CBR), [63], [64], [65] developed a Case-Based Behavior
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TABLE 1. Applications and methodologies in BVR air combat.

Recognition (CBBR) system that annotated agent behaviors
from spatio-temporal features, improving recognition within
GR-controlled UAVs. Likewise, [66] combined opponent
modeling and CBR to identify adversarial team behaviors.

To handle incomplete data, [70] introduced an intention
recognition method based on Multi-Granulation Rough Sets
(MGRS). The study in [68] fused Dempster-Shafer theory
with Deep Temporal Networks for improved classification,
while [71] used a decision tree and Gated Recurrent
Unit (GRU) for state prediction in one-on-one air combat.
In [1], a hierarchical approach was proposed using Cascaded
Support Vector Machines (CSVM) and cumulative features
for multi-dimensional target classification.

To recognize tactical intent, [69] introduced an attention-
enhanced swarm optimization and bidirectional GRU model
(A-TSO-PBiGRU) for shift detection. Similarly, [67] applied
Dynamic Bayesian Networks (DBNs) to infer causal links
between flight states and tactical movements, improving
formation recognition and SA.

C. GUIDANCE AND INTERCEPTION
Guidance and interception mechanisms are essential for
increasing the probability of a successfulmissile engagement,
particularly against fast and evasive targets.

Guidance strategies were compared to identify config-
urations that minimized interception time and maneuver
load, offering improved engagement options under varying
combat conditions [72]. The interception of hypersonic
targets was addressed by enhancing the missile’s ability to

reach the target at a specific impact angle, improving the
conditions for the final engagement phase [73]. In unmanned
operations, aiming precision in Unmanned Combat Aerial
Vehicles (UCAV) was improved through autonomous guid-
ance techniques, enabling more effective launches against
maneuvering aerial targets [74].
Maneuver decisions during missile flight were optimized

to support engagement planning and increase success rates
in simulated combat scenarios [75]. Real-time trajectory
adjustment was achieved through probabilistic modeling of
the Dynamic Attack Zone (DAZ), helping maintain accu-
racy despite environmental uncertainty [76]. Coordination
between radars and missiles was improved by cooperative
guidance models, which enhanced system-level precision in
anti-aircraft defense [77].

The influence of data link quality on missile effectiveness
was quantified through simulation, showing how update
delays and errors impacted seeker activation and overall
success [78]. Lastly, ignition control and trajectory correction
for dual-pulse motor missiles were refined to support
effective interception of distant targets [79].

D. MANEUVER PLANNING
Maneuver planning involves calculating a sequence ofmotion
primitives to reach an advantageous tactical situation.

Early work in this area emphasized structured evaluation
and decision models. The authors of [80] introduced a frame-
work comprising a situation evaluation model, a maneuver
decision model, and a one-on-one engagement evaluation
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model. In [81], a tactical decision system was developed
based on environmental conditions, existing threats, target
weapon performance, and air-combat rules. Incorporating
broader situational factors, [82] explored Target Assignment
(TA) strategies that integrated tactical positioning and
weapon capabilities to improve resource allocation.

More recent research focused on learning-based approaches.
[83], [84], and [85] applied DRL to maneuver planning,
improving threat avoidance and target engagement in
dynamic scenarios. These works considered different initial
engagement conditions to train more adaptable agent models.
In [86], an autonomous maneuver strategy was developed
using the Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm, focusing on missile evasion in one-on-
one engagements. The study in [87] designed a maneuver
decision-making method based on relative azimuths and
distances between opponents. Finally, [88] combined DRL
with Monte Carlo Tree Search (MCTS) to investigate
maneuver planning without relying on prior pilot knowledge
or value-based functions.

E. MISSILE ENGAGEMENT
Missile engagement and evasion require optimizing both
launch timing and maneuver strategies to maximize offensive
impact and survivability.

On the offensive side, [38] employed Supervised Learning
(SL) to estimate optimal missile launch moments, enhancing
mission effectiveness. For stealthy operations, [89] intro-
duced a radar blind zone maneuver control method, enabling
undetected approaches, while [92] analyzed missile capture
areas and minimum evasive ranges. This was done to
identify optimal launch distances and defensive strategies in
coordinated team air combat scenarios.

On the defensive side, [90] proposed an autonomous
evasive maneuver strategy for UCAV using a hierarchical
multi-objective Evolutionary Algorithm (EA) to increase
survivability. In [91], the missile evasion problem was
modeled as a two-team zero-sum differential game, where
one aircraft aimed to increase its distance from an incoming
missile, while simultaneously closing in on another non-
aggressive target.

In UCAV operations, [93] introduced a cooperative
occupation method based on WEZ, improving coordinated
positioning. Lastly, [94] addressed the challenge of informa-
tion blindness after the launch of AAMs.

F. MULTI-AGENT COORDINATION
Multi-agent coordination combat enables cooperative
decision-making, joint tactical execution, and improved
responsiveness among autonomous platforms. Applications
range from coordinated engagement strategies to dynamic
team reconfiguration and human–AI teaming.

Tactical strategies for multiple UAVs were applied
to decompose air-to-air confrontations into one-on-one
cases, improving maneuver efficiency and engagement
success [95]. Cooperative position allocation and TA were

modeled as a zero-sum game, where a hybrid Double
Oracle and neighborhood search algorithm improved solution
quality under time constraints [96].

In [97], extensions to the Tactical Battle Manager included
a distributed system for detecting discrepancies in mission
data across agents, aiming to improve coordination and
overall mission effectiveness. GR techniques were advanced
through a character-oriented framework that improved coor-
dination among autonomous agents operating with limited
communication [98]. To support human-AI teaming, the
AlphaMosaic architecture integrated human feedback into
Battle Management Systems (BMS), enabling trust-based
collaboration in dynamic missions [99].

Swarm intelligence was adapted to fixed-wing UCAV
platforms, enabling behaviors such as formation flight, self-
reorganization, and dynamic adaptation after losses [100].
A centralized AI planning system was used to coordi-
nate multi-agent mission plans with full observability and
verifiability [101]. War game simulations were employed
to test coordinated fleet behavior, with tactical parameters
optimized to enhance mission outcomes in matched-force
engagements [102].
Tactical formations of UAVs were optimized against

uncertain enemy behavior, using simulation-based evalua-
tions [42]. A two-stage cooperative pursuit strategy was
introduced, combining luring tactics and Hybrid A* path
planning to increase interception success [103]. Adaptive
guidance methods were designed to improve UAV occupancy
using a multi-objective function and the GDT-SOS meta-
heuristic [104].

Hierarchical RL architectures enabledmulti-agent teams to
learn both low-level and high-level tactics through self-play
and scenario decomposition [3]. Multi-agent Proximal Policy
Optimization (PPO) was applied to UCAV coordination,
integrating domain knowledge into the reward structure to
achieve improved performance [105].
A graph-based reasoning model combined expert knowl-

edge with graph neural networks to model complex collabo-
ration patterns and simplify decision-making in large-scale
engagements [106]. An algorithm based on adversarial
self-play and hierarchical policy gradients was used to learn
emergent strategies that outperformed expert baselines [107].
Deep deterministic policy gradients were applied in swarm
maneuvering, where inter-agent cooperation and target
engagement were jointly learned [108]. Finally, neural net-
works and artificial potential fields were combined to support
cooperative path planning against adaptive adversaries [109].

G. OPERATIONAL ANALYSIS
Operational Analysis (OA) involves using simulations, mod-
els, and metrics to evaluate combat effectiveness, support
tactical planning, and inform operational decisions.

Stochastic game-based models were applied to analyze
multi-aircraft engagements under uncertainty, providing
insights into coordination strategies and missile allocation
in BVR scenarios [11], [40]. Simulations involving human
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operators were used to assess pilot and team performance
under realistic combat conditions, focusing on compliance
with operational procedures, cognitive workload, and shared
SA [46], [110], [111].

Several studies presented simulation platforms for training,
tactical testing, and operational planning. These included
a tactical-level air combat simulation system developed to
support intelligent decision-making [8], the ASA framework
designed for evaluating military scenarios in the Brazilian
Air Force [112], and its cloud-based extension, ASA-
SimaaS, which enabled scalable and autonomous simulation
services [113]. AsaPy complemented these tools by offering
post-simulation analysis capabilities using statistical and ML
methods [114].

To assess fleet effectiveness, system-of-systems (SoS)
simulations were used to evaluate aircraft design, platform
interoperability, and mission-level success indicators such
as survivability and weapon usage [115]. Parametric studies
investigated how variables like radar cross-section, missile
range, flight altitude, and communication delays affected
outcome metrics such as probability of kill and overall
combat effectiveness [116], [120], [121]. The influence
of agent behavior on simulation credibility was explored
through agent-based models, enhancing validation methods
in both symmetric and asymmetric BVR scenarios [117].
Communication systems were addressed through the

design of a dual-mode protocol that adapted to network con-
ditions in cooperative air combat [118]. Simulation architec-
tures emphasized scalability and flexibility, underlining the
need for multi-agent systems capable of managing AI-driven
entities and distributed decision-making processes [119].
Meanwhile, validation environments for high-dynamic flight
conditions were developed to assess electro-optical system
performance under large maneuvers [122].
Network-centric operations were modeled to analyze

combat effectiveness under varying levels of synergy between
sensors, command structures, and fire control systems [123].
Finally, decision-support tools were proposed based on
Multi-Criteria Decision-Making (MCDM) [124], relevance
vector machines [125], and improved Extreme Learning
Machine (ELM) models [126], offering quantitative evalua-
tions of fighter aircraft and tactical configurations.

H. PILOT TRAINING
Pilot training focuses on enhancing readiness and effec-
tiveness through advanced simulation environments, perfor-
mancemeasurement, and adaptive learning techniques. These
studies aim to improve decision-making and SA in complex
combat scenarios.

The approach outlined in [127] provided insights into
retrospective performance evaluation to identify areas for
improvement, informing targeted training adjustments. Sim-
ilarly, [130] explored behavioral modeling to enhance pilot
decision-making under high-stress conditions, improving the
realism of training exercises.

The integration of Live, Virtual, and Constructive (LVC)
environments, as discussed in [131], offers comprehensive
training scenarios that combine real and simulated elements
to create more realistic and immersive training. This enables
pilots to experience diverse combat situations, improving
adaptability under varying conditions. To further refine
training outcomes, [129] proposed a performance-weighting
system to optimize training outcomes, ensuring that pilots
meet competency benchmarks efficiently.

The survey on adaptive training methodologies in [18]
highlighted advancements in AI-driven systems that person-
alize training content based on pilot performance. Building on
this, [10] and [128] discuss methods for rapidly adapting air
combat behaviors and validating training simulations. These
studies aimed to ensure that simulation systems accurately
reflect real-world combat dynamics, providing practical tools
to directly impact pilot training effectiveness by improving
responsiveness and situational understanding.

I. SITUATIONAL AWARENESS
SA is essential for understanding the tactical environment,
including the positions, actions, and intentions of both
friendly and enemy aircraft. Effective SA supports informed
decision-making in engagement, positioning, and evasion,
ultimately enhancing combat effectiveness and survivability.

In [132], methodologies for real-time data processing were
explored, enabling pilots to interpret complex information
efficiently. Expanding SA to a team level, [133] demonstrated
the benefits of collaborative data sharing for mission
coherence and performance.

For threat assessment, [137] and [152] discuss methods
to determine enemy WEZ, providing pilots with spatial
awareness to avoid or confront threats strategically. Real-
time threat analysis tools, such as those developed in [141],
continuously updated situational data, ensuring that pilots
can adapt their tactics accordingly. Furthermore, [134], [139],
and [135] integrated the prediction of target intention into
the assessment of threats, analyzing battlefield situations and
establishing threat index systems.

AI-driven approaches to SA, like those discussed in [138]
and [143], applied ML to threat detection, helping pilots
anticipate and respond to potential threats more quickly.
Additionally, Monte Carlo-based methods for probabilistic
assessment, such as in [136], enable pilots to navigate
uncertain situations with better-informed risk management.
Research in [47] proposed an engagement decision support
tool based on the Defensive Counter Air (DCA) operational
metric. The use of Deep Neural Networks (DNN) to perform
the estimation of the WEZ maximum launch range was
analyzed in [140].

Additional decision support systems like [142] employed
onboard sensor data and neural networks to assess
shoot-down probabilities in real-time. In [6], a method to
estimate maneuver flexibility under adversarial conditions
was introduced, aiding formation-level decision-making.
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J. TARGET ASSIGNMENT
TA involves efficiently allocating resources, such as AAMs
or surface-to-air missiles and aircraft, to neutralize enemy
threats. This process requires strategies to optimize engage-
ments while minimizing resource expenditure and maximiz-
ing mission success.

Several studies focused on target allocation methodologies
to improve combat effectiveness. In [146], [147], and
[149], the authors discuss Multi-Target Assignment (MTA)
strategies that dynamically assign missiles and aircraft to
multiple targets. Likewise, [148] proposed methods for
assigning multiple friendly aircraft to a set of enemy targets,
focusing on coordinated attack strategies to improve the
efficiency of engagement.

Studies such as [144], [150] examined algorithms that
determine the optimal pairing of weapons to threats based on
mission objectives and constraints, aiming to maximize kill
probability while preserving resources. In [145], the authors
refined this process by introducing an improved assignment
model that incorporates target priority and engagement
timing.

Lastly, [151] investigated a hybrid approach, combining
optimization techniques with real-time tactical adjustments
to adapt to evolving combat conditions.

III. METHODOLOGIES
This section outlines the methodological foundations used
to address key challenges in BVR air combat, where
dynamic, uncertain, and adversarial environments demand
robust and adaptive decision-making. Techniques span a
wide spectrum—from data-driven methods like supervised,
unsupervised, and RL to structured reasoning approaches
such as control theory, graphical models, and game theory.
Each subsection explores the specifics of each methodology,
illustrating their application and possible advantages.

A. CONTROL THEORY
Control theory employs mathematical models to guide and
influence the behavior of dynamic systems, making it
especially valuable in BVR air combat for precise aircraft and
missile guidance, interception of maneuvering targets, and
strategic positioning under uncertainty.

Guidance laws were developed to optimize interception
effectiveness by balancing engagement time and maneuver
load [72], while model predictive strategies improved mid-
course guidance in hypersonic scenarios with terminal-angle
constraints [73].

Stealthy engagement strategies integrated sliding mode
control techniques with electronic support measures,
enabling adaptive transitions between stealth and aggressive
maneuvers to exploit enemy radar vulnerabilities [89].
Autonomous UCAV engagements similarly benefited from
adaptive fuzzy control within a Model Predictive Control
(MPC) framework, enhancing precision and responsiveness

against agile targets [74]. Fuzzy logic was also applied to
recommend combat modes using situational inputs [48].

B. EVOLUTIONARY ALGORITHMS
EAs are a class of optimization techniques inspired by
biological evolution, capable of solving complex, high-
dimensional, and non-convex problems.

In behavior modeling, genetic programming evolved
Behavior Trees (BTs) to discover novel air combat strategies
under EW effects [49]. Grammatical evolution was used
to generate adaptive CGFs and HBMs by encoding subject
matter expert knowledge in modular BTs, enabling dynamic
responses in training simulations [50], [51].

Differential evolution algorithms introduced adaptive
parameter strategies to improve convergence and robust-
ness in tactical planning [75]. Multi-objective evolutionary
approaches applied hierarchical and Pareto-based methods to
balance competing goals [90].

Hybrid evolutionary methods, including genetic algo-
rithms enhanced by simulated annealing and discrete evo-
lutionary strategies, were applied to resource allocation and
assignment tasks, where mechanisms like adaptive crossover,
mutation rates, and disturbance strategies promote efficient
convergence and solution diversity [144], [145].

C. GAME THEORY
Game theory offersmathematical tools for analyzing strategic
interactions in adversarial and cooperative settings. In BVR
air combat, it supports optimal strategies for navigation,
engagement, evasion, and team coordination.

In [91], differential game theory was used to model
dynamic zero-sum interactions with closed-loop control to
ensure safe maneuvering under threat. On the other hand,
stochastic games enabled sequential decision-making under
uncertainty through subgame decomposition and equilibrium
analysis [11], [40].

Pursuit-evasion games defined missile capture and eva-
sion ranges using utilitarian formulations to guide tactical
behavior [92]. For cooperation, consensus-based algorithms
combined with auctions and matrix games enabled scalable
and efficient resource allocation [96], [146].

Additionally, min-max approaches further simplified
multi-agent engagements into pairwise confrontations, sup-
porting fast and systematic tactical decisions [95].

D. GOAL REASONING
GR enables autonomous agents to dynamically deliberate,
adapt, and reprioritize goals based on real-time context,
making it well-suited for adversarial environments like BVR
air combat. As discussed in the overview by [15], GR
supports deliberative autonomy, dynamic goal management,
and contributes to AI safety.

CBBR methods enhance GR by annotating adversarial
behaviors from spatio-temporal data, improving adaptation
under partial observability [63], [64]. [65] extended this with
the Policy and Goal Recognizer (PaGR) system, capable of
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inferring and adjusting assumptions about opponent goals
and strategies. Likewise, [66] combined case retrieval with
learned classifications to recognize adversarial team behav-
iors, while [62] integrated behavior recognition with active
planning in a Partially Observable Markov Decision Process
(POMDP) framework to improve recognition efficiency.

Distributed GR further enabled decentralized adaptation
by detecting discrepancies between expected and observed
behaviors [97]. Narrative team planning supported decentral-
ized coordination through hierarchical narrative-based goal
structures, improving resilience under conditions of limited
communication and uncertainty [98].

E. GRAPHICAL MODELS
Graphical models support probabilistic reasoning under
uncertainty by capturing structured relationships among
variables. In BVR air combat, techniques such as
Bayesian Networks (BNs), DBNs, and Influence Diagrams
address challenges in threat assessment, recognition, and
decision-making.

DBNs were used to infer maneuver and formation
tactics by modeling causal links between aircraft states
and actions [67], while BNs captured missile guidance
uncertainty by linking kinematic parameters to the DAZ [76].

To improve scalability, Multi-Entity Bayesian Networks
(MEBNs) offered modular representations of battlefield
entities and interactions [132]. Influence diagrams combined
situation assessment with maneuver decisions to evaluate
tactical alternatives and equipment effectiveness under oper-
ational constraints [80].

F. HUMAN PERFORMANCE EVALUATION
Human performance evaluation methodologies assess cogni-
tive load, SA, decision-making, procedural adherence, and
team effectiveness under the complex and time-critical con-
ditions characteristic of BVR air combat. Rather than relying
solely on outcome metrics (e.g., mission success), recent
methodological advances emphasize internal cognitive states,
team dynamics, and alignment with doctrinal procedures.

Workload was measured using modified NASA-TLX
methods with enhanced weighting schemes (e.g., Swing,
Analytic Hierarchy Process (AHP)) for better interpretabil-
ity [129], while retrospective verbal probing provided
structured, non-intrusive insights into pilots’ mental models
post-mission [127].
Team assessments incorporated the critical decision

method to evaluate shared SA and its tactical impact [133],
supported by multidimensional frameworks integrating
taskwork, normative behavior, and workload within LVC
simulations [110].

Normative Performance (NP) was assessed via structured
observer scoring to ensure doctrinal alignment during
debriefings [111], while human-agent interaction models
were validated for reliability and relevance in adaptive
training systems [128].

G. MODELING AND SIMULATION
Modeling and Simulation (M&S) provide a methodological
foundation for representing, analyzing, and validating the
complex dynamics of BVR air combat. These techniques
enable the abstraction of aircraft, weapons, sensors, and
command structures into executable models that support
experimentation, decision-making, and system development
across both tactical and strategic levels.

Several studies introduced simulation frameworks that
support experimentation and decision-making. ASA [112],
[113] offers a scalable, object-oriented environment with
distributed execution and runtime model loading, while
AsaPy [114] supports statistical and ML-based post-
processing. Other contributions focused onAI-integrated sys-
tems, such as AlphaMosaic [99], a battle management archi-
tecture that supports human–AI teaming through trust-aware
decision loops in dynamic BVR environments. The study
in [8] introduced a tactical-level simulation system that
generates data for intelligent decision-making models across
human–human, human–machine, and machine–machine
configurations. Similarly, [120] presented a modeling
environment for analyzing tactics andmaneuver effectiveness
using the probability of kill (Pk) via a missile launch envelope
model. Complementing these were LVC-based environments
that support the iterative development of tactics, techniques,
and procedures [46], including pilot co-designed training
tools for asymmetric roles and after-action review visual-
ization [130], [131]. Additional frameworks were proposed
for electro-optical system testing under high-dynamic flight
simulation [122] and for scaling multi-agent simulations with
AI-enabled entities [119].
Agent-based M&S examined how behavioral variation

influences engagement outcomes in [117]. Likewise, SoS
simulations linked aircraft design variables to mission-level
effectiveness by modeling interactions between manned
fighters and cooperative unmanned platforms [115]. Sym-
bolic and AI-integrated systems extend simulation’s role
into planning and autonomy. High-level planners decom-
posed multi-agent objectives into coordinated execution
plans [101], while swarm-intelligent UCAV platforms simu-
lated full-mission coordination, formation management, and
mid-flight reconfiguration in response to unit loss or dynamic
updates [100].
Other studies used simulation to evaluate operational

variables. These included the effect of data link quality
on seeker lock and Pk [78], the impact of stealth and
missile range on 1-vs-1 effectiveness [116], and coopera-
tive radar-missile guidance modeled through Monte Carlo
estimation [77]. Threat assessment models incorporated
both expert and data-driven weighting schemes alongside
intent prediction and event impact modeling [134], [135].
The influence of communication delays on fleet-level
combat effectiveness was explored through threat matrix
modeling and adjudication methods [121]. Network-centric
air combat was also addressed through communication
protocols [118] and synergy models [123] to assess
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decentralized cooperation under bandwidth and latency
constraints.

Beyond performance evaluation, M&S also supports
behavior modeling and interface testing. BTs were used to
structure decision logic for CGFs in virtual BVR simula-
tions [52], while testbeds for electro-optical tracking under
high-maneuver dynamics validated hardware behavior under
simulated aerial conditions [122]. Broader overviews of
UAV air combat decision modeling highlighted simulation’s
role in structuring multi-stage decision pipelines [12], and
virtual expert systems for tactic generation model high-level
reasoning across BVR and WVR conditions [81].
Additional information on the application of ML to

model air combat behavior, covering both WVR and BVR
engagements, was presented in [18].

H. OPTIMIZATION
Optimization aims to make the most effective use of available
resources, actions, or strategies to achieve mission objectives
under constraints. In BVR air combat, it provides a general
framework for decision-making tasks such as engagement
timing, resource allocation, and path planning. Methods
span from classical optimization to bio-inspired heuristics,
often tailored to dynamic, high-dimensional, and time-critical
environments.

A wide range of swarm intelligence algorithms were
adapted to the air combat domain. Variants of Particle Swarm
Optimization (PSO) were used to handle missile-target
assignment [147], cooperative UCAV occupation modeling
through discrete PSO [93], and air defense target alloca-
tion under real-time constraints [150]. Additional exten-
sions included Particle-Pair Swarm Optimization (P2SO) to
co-optimize fleet parameters in symmetric war games [102],
and Stochastic Dominant Learning Pigeon-Inspired Opti-
mization (SDLPIO), which integrated payoff-based decision-
making for multi-UAV target allocation [148].
Multi-objective optimization and MCDM method-

ologies explicitly handle trade-offs among competing
objectives or decision criteria. Techniques like Gradient
Descent–Truncated Symbiotic Organisms Search (GDT-
SOS) systematically balanced multiple tactical parameters
(e.g., distance, speed, angles) to derive optimized solutions
for trajectory planning and positional guidance [104].
Similarly, MCDM approaches such as the integration of
AHP and Kullback–Leibler divergence (KL-AHP), as well
as TOPSIS, systematically evaluated and ranked alternative
solutions according to multiple criteria, enabling strategic
and tactical decision-making under uncertainty [124]. Hybrid
A* path planning, guided by multi-objective considerations,
enabled coordinated UAV trajectories [103].Models based on
geometric constraints and engagement zones were also used
to derive best attack positions in multi-target scenarios [82],
while methods like the golden section search were applied to
real-time missile zone computation [137].
In distributed allocation, asynchronous consensus-based

auction algorithms coordinated missile-target assignments

across UAV teams, improving solution quality under limited
communication [149].
In more tactical-level formation planning, metaheuristic

comparisons were used to optimize UAV swarm configu-
rations under uncertainty. In [42], six metaheuristics were
evaluated in a war game setup to determine robust formation
strategies against an opposing force, incorporating variability
in enemy location and engagement potential.

Finally, in [136], Monte Carlo Tree Search (MCTS) was
integrated with convex optimization to determine safe missile
guidance trajectories in adversarial environments, supporting
real-time pilot decision-making.

I. REINFORCEMENT LEARNING
RL techniques may enhance tactical creativity and effi-
ciency by autonomously learning and adapting strategies
through interactions with dynamic environments, leveraging
algorithms for exploration, self-play, and expert knowledge
integration. It is also one of the most common research
methods in the BVR research field.

Although BVR air combat often involves multiple units
per team, researchers frequently simplify the setting to one-
on-one engagements to isolate tactical decision-making. The
study in [10] applied RL to generate adaptive behaviors for
CGFs, while [138] used PPO to model evasive behavior
against incoming missiles, with a reward function based on
the smallest distance between the agent and the missile.
In [59], an Improved Q-network (IQN) was used to balance
exploration and exploitation. The research in [86] intro-
duced a modified TD3 algorithm for maneuver and missile
engagement strategies, and [55] developed a Dueling Double
Deep Q-network (D3QN) for decision-making across varied
engagement conditions.

Several works explored improvements in learning effi-
ciency and realism, such as [83], which proposed an enhanced
Deep Q-network (DQN) with Long Short-Term Memory
(LSTM)-based perception layers for maneuver planning. The
work in [84] introduced Dynamic Quality Replay (DQR) to
improve policy learning from confrontation demonstrations,
with Soft Actor-Critic (SAC) outperforming other methods.
In [79], DRLwas integrated with singular perturbation theory
to generate ignition and acceleration commands for dual-
pulse AAMs, enhancing long-range guidance.

Agent construction and training methods were also
explored in [56], where a SAC-based agent was trained
using curriculum learning across staged tasks—flight control,
guided engagement, and defeating expert systems. Similarly,
[60] proposed a hybrid self-play DRL strategy, allowing
agents to train against both expert systems and delayed
self-play opponents to prevent local optima. In [88], authors
combined RL with MCTS to learn maneuver strategies
without reliance on handcrafted reward functions or expert
features.

While one-on-one scenarios dominate early exploration,
multi-agent reinforcement learning enables improved surviv-
ability, shared situational awareness, and tactical synergy.
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Multi-Agent Proximal Policy Optimization (MAPPO) and
Hierarchical Framework Embedding Expert Knowledge
(H3E) frameworks incorporate hierarchical structures and
expert guidance to improve coordination and efficiency
across agents [2], [105]. In [85], a dual-UAV cooperative
air combat strategy was proposed using prioritized sampling
and a discretized action space, demonstrating effective
maneuver planning and obstacle avoidance. Swarm-based
strategies using Deep Deterministic Policy Gradient (DDPG)
allow groups of agents to perform cooperative maneuvers
in continuous control spaces [108]. Multi-agent decision
networks, including hierarchical policy gradients [107] and
improved Neural Fictitious Self-Play (NFSP) [3], [54],
support the emergence of high-level strategies. Meanwhile,
[57] introduced Key Air Combat Event Reward Shaping
(KAERS) to accelerate learning via sparse but meaningful
feedback, and [87] explored curriculum learning to improve
convergence in dual-UAV settings. Large-scale air combat
scenarios were also addressed in [106], where Graph Neural
Networks (GNNs) combined with expert knowledge to
reason over abstract combat relationships.

Lastly, comprehensive overviews of DRL applications in
air combat simulation environments and military contexts are
provided in [53] and [58], while [17] reviews broader military
applications, outlining key limitations and future directions
for DRL-based approaches.

J. SUPERVISED AND UNSUPERVISED LEARNING
Statistical modeling techniques, particularly those based on
supervised and unsupervised learning, have been widely
applied to support threat assessment, maneuver intention
recognition, missile launch prediction, and combat effec-
tiveness evaluation. These approaches rely on data from
simulations or real-world exercises to model combat scenar-
ios, extract patterns, and enhance tactical reasoning under
uncertainty.

Most existing work adopts SL, where models are trained
on labeled data. For example, [139] used linear discriminant
analysis to preprocess threat indicators and trained an ELM
for target threat assessment. For engagement decision sup-
port, [38] and [47] built tree-based models (e.g., XGBoost)
to predict engagement outcomes and missile launch timing,
while [140] applied a DNN to estimate the WEZ from
multiple simulated launches. Reference [142], in turn, used a
missile launch dataset—originated from training exercises—
to train an ANN for UCAV decision support. For air combat
effectiveness evaluation, [125] proposed a method based
on relevance vector machine, while [126] introduced an
improved ELM with M-estimation to handle gross errors in
training data.

Sequence models are often used to address tempo-
ral pattern recognition. The study in [68] combined
one-dimensional convolutional neural network (1DCNN) and
bidirectional LSTM with evidence fusion for intent classi-
fication, while [69] introduced an attention-enhanced bidi-
rectional GRU architecture tuned via swarm optimization.

In [71], a GRU was used for enemy state prediction and a
decision tree was then applied for intent recognition. In con-
trast, [1] employed a cascaded Support Vector Machines
(SVM) framework with hierarchical feature decomposition,
which, while not a sequence model per se, operates on
temporal trajectory data.

SL techniques have also supported SA and post-launch
assessment. For example, [6] and [143] trained deep networks
to evaluate options under multiple missile threats and assess
formation flexibility. In [94], random forest regression was
used for dynamic post-launch missile effectiveness evalua-
tion. In cooperative contexts, [109] employed SL to adjust
parameters in path planning for multi-agent engagements,
and [151] developed a back propagation (BP) neural network
to support collaborative TA.

In settings with limited or incomplete data, Unsupervised
Learning (UL) techniques are often used to extract structure
or reduce dimensionality. For instance, [141] employed
a Sparse Autoencoder (SAE) to approximate the Tactical
Control Range (TCR), enabling fast inference without relying
on labeled output data.

Other approaches use symbolic or hybrid reasoning
frameworks that may not strictly fall under UL but operate
in low-label or uncertain environments. In [70], MGRS
theory was used for adversarial intent recognition, combining
logic-based modeling with attribute importance ranking
to support classification under uncertainty. Likewise, [61]
applied granular computing to structure tactical decisions
at multiple abstraction levels, proposing a feature reduction
method to improve classification accuracy without relying
heavily on labeled datasets.

IV. SIMULATION TOOLS
Simulation environments and tools are essential for advanc-
ing BVR air combat research, enabling the modeling of
complex scenarios, evaluation of decision-making algo-
rithms, and optimization of operational strategies. These
tools range from general-purpose platforms to bespoke
systems tailored to specific research needs, each offering
unique capabilities to address various aspects of BVR
combat.

Many platforms support interoperability through standards
like HLA (High-Level Architecture) and DIS (Distributed
Interactive Simulation), facilitating integration across multi-
ple simulation systems and real-time synchronization. In this
section, we describe some of the more common tools that are
used in BVR air combat research. At the end of the section,
we present an overview table summarizing the key tools,
their features, programming languages, and interoperability
capabilities.

A. AFSIM: ADVANCED FRAMEWORK FOR SIMULATION,
INTEGRATION, AND MODELING
The Advanced Framework for Simulation, Integration, and
Modeling (AFSIM) [153], developed by the United States
Air Force Research Laboratory, is a widely used platform
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in BVR air combat research. AFSIM offers flexibility for
modeling combat environments, integrating systems, and
supporting mission planning and decision-making processes.
It is commonly applied in research on cognitive control,
behavior recognition, and AI [15], [62], [63], [64], [65],
[66], [97], [99], [101]. AFSIM supports integration with other
models, enabling real-time interactions and simulations at
both strategic and tactical levels. This interoperability facil-
itates research in battle management and mission planning.
AFSIM is not open-source and is controlled under United
States government regulations.

B. ASA: AEROSPACE SIMULATION ENVIRONMENT
The Aerospace Simulation Environment (ASA, from the
Portuguese Ambiente de Simulação Aeroespacial) [112],
[113], developed by the Brazilian Air Force, is a custom-
built object-oriented simulation framework in C++. ASA
is designed for modeling complex aerospace operations and
supports research in SA, mission planning, and operational
decision-making [38], [42], [47], [53], [114], [117], [140].
ASA’s flexibility allows integrating ML techniques with
traditional simulations, enabling researchers to optimize
tactics and predict adversarial behaviors. Its architecture
also supports detailed modeling of mission parameters,
aircraft systems, and weapons. ASA is not publicly
available and is controlled under Brazilian government
regulations.

C. BESPOKE SYSTEMS
Bespoke systems, which are developed in Python, C++,
or MATLAB, are specially designed tools for study where
commercially available alternatives are inadequate. Since
EW models, missile guidance, and BVR techniques are
frequently classified, sensitive data from commercial systems
cannot be accessed for open study. Therefore, such tools are
often inadequate for the complexity, security, and adaptability
requirements of these scenarios. Bespoke systems are the
most prevalent as these methodologies promote quick devel-
opment [8], [11], [40], [55], [56], [59], [61], [67], [68], [70],
[72], [73], [74], [76], [77], [79], [81], [82], [83], [84], [88],
[89], [92], [93], [94], [95], [96], [98], [103], [104], [105],
[108], [110], [111], [116], [118], [122], [123], [124], [125],
[126], [135], [137], [139], [142], [145], [147], [148], [149],
[151].

D. DCS WORLD: DIGITAL COMBAT SIMULATOR WORLD
DCS World [154] is a high-fidelity, commercially available
combat flight simulator. Known for its realistic flight
physics and detailed models, it is widely used in studies
on decision-making and RL-based combat engagement [54],
[86]. Its open architecture supports custom module devel-
opment, enabling researchers to simulate dynamic, high-
stakes BVR combat scenarios. This capability makes it an
ideal platform for testing AI-driven agents under realistic
operational conditions.

E. FLAMES: FLEXIBLE ANALYSIS AND MODELING
EFFECTIVENESS SYSTEM
FLAMES [155] is a modular, commercial framework for
developing and executing LVC simulations. It supports real-
time visualization, scenario management, and OA, making it
effective for mission planning and combat simulations [38].
Despite its adaptability, FLAMES’ commercial licensing
can limit accessibility, and its complexity can hinder rapid
prototyping or use in resource-constrained research contexts.

F. FLSC: SWEDISH AIR FORCE COMBAT SIMULATION
CENTRE
The Swedish Air Force Combat Simulation Centre (FLSC),
developed by the Swedish Defense Research Agency, incor-
porates LVC simulations to analyze air combat scenarios.
FLSC is utilized for pilot training, mission planning, and
decision-support research, as well as evaluating human-
AI collaboration [130], [131]. Its features contribute to
enhancing SA and decision-making in joint operations.
Since FLSC is operated by FOI (Swedish Defence Research
Agency), access is restricted and is not publicly available,
but researchers working on defense projects may gain access
through FOI partnerships.

G. JSBSim
JSBSim [156] is an open-source flight dynamics model
widely used in RL-based BVR studies requiring precise
aircraft simulations. It supports tasks such as decision-
making, maneuver optimization, and combat engagement [3],
[6], [58], [60], [138], [143]. JSBSim is often integrated with
platforms like Unity (IAGSim) and bespoke environments
to create computationally efficient simulations for exploring
autonomous decision-making in dynamic scenarios.

H. MATLAB AND SIMULINK
MATLAB [157] and Simulink [158] are widely used
for simulation, control theory, and optimization research.
MATLAB’s mathematical capabilities support studies on
decision-making and combat engagements [1], [50], [51],
[69], [75], [78], [80], [90], [91], [102], [109], [120], [121],
[141], [146], [150]. Simulink extends MATLAB’s function-
ality with graphical tools for dynamic system modeling,
offering a useful platform for control strategies.

I. PYTHON AND R
Python is a key tool for developing simulation environments
and ML models. With libraries such as TensorFlow [159]
and PyTorch [160], Python enables mission planning, RL
implementation, and optimization [71], [85], [100], [136].
Its flexibility supports rapid prototyping and integration
with other platforms for air combat research. R is occa-
sionally used in air combat research for data analysis and
simulation-related statistical modeling [140].

J. OTHER TOOLS
Several other tools support BVR air combat research:
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• ACE-2: A custom simulator used for testing genetic
optimization techniques in air combat maneuver-
ing [49].

• ACEM: A LVC simulation environment for human
performance analysis in air combat [46].

• FTD (F/A-18C): Flight Training Device for the F/A-
18C, used for high-fidelity simulation of pilot behavior,
coordination, and training scenarios [127], [129], [133].

• IAGSim (Unity + JSBSim): A custom-built simulator
that combines JSBSim for flight dynamics and Unity
for real-time rendering, designed for autonomous air
combat research [2].

• MACE [161]: The Modern Air Combat Environment
(MACE) is a scalable distributed simulation used for OA
and testing of tactical air combat scenarios [115].

• NLR’s Fighter 4-Ship Simulator: A simulator devel-
oped by the Netherlands Aerospace Centre (NLR) for
pilot training and human-autonomy interaction in multi-
aircraft engagements [128].

• STAGE: A framework for rapidly generating air combat
scenarios used in AI and RL training [10].

• Super Decisions: A decision-support software imple-
menting the AHP and Analytic Network Process (ANP),
used in air combat for threat ranking and mission
planning [134].

• UnBBayes-MEBN: A probabilistic reasoning frame-
work based on MEBNs, applied to situation awareness
and decision-making under uncertainty [132].

• WESS: A simulation tool for studying adaptive tactical
decision-making. It has been applied in modeling
dynamic combat behavior [50], [51].

• Wukong: A RL-based platform designed for multi-
agent tactical decision-making in BVR scenarios [57],
[106], [107].

• X-Plane [162]: A high-fidelity commercial flight sim-
ulator used in autonomous behavior validation and
operational planning [48].

K. TOOLS SUMMARY
Table 2 summarizes the key tools, their primary applications,
features, programming languages, and interoperability capa-
bilities. This table includes 116 of the 120 works mapped
in this work; the remaining four were survey or overview
works that did not employ a specific tool. Each column
provides specific information to facilitate comparison among
simulation environments: Simulation Tool lists the name
of the simulator or framework; Key Features highlights
the main characteristics or functionalities relevant to BVR
air combat research; Programming Language indicates the
primary languages or platforms used for development or
customization; Interoperability specifies whether the tool
supports standard simulation protocols (e.g., HLA, DIS), uses
custom interfaces, or lacks interoperability information; and
References Using This Simulation Tool lists the studies that
employed each tool in their experiments or analyses.

V. OPEN CHALLENGES
Despite significant advancements in air combat decision-
making using RL and other advanced techniques, several
open challenges remain. These challenges present exciting
opportunities for future research.
Complexity of Scenarios: Current methods, such as NFSP

RL andDRLwith DQR, are often validated in simplified one-
on-one engagements [54], [84]. Extending these approaches
to multi-agent environments that reflect the complexity of
real-world air combat is crucial. Promising frameworks,
including swarm-based strategies leveraging DDPG and
hierarchical methods like H3E, highlight potential directions
for tackling this challenge [2], [108]. Additionally, TA,
detection, and guidance problems predominantly assume
homogeneous models of radars, aircraft, and communication
nodes [118], [144], [148], [149], [163], [164], [165]. Future
research can explore heterogeneous models to better capture
the complexities of diverse real-world systems.
Full Observability Assumptions: Many methods, such

as those based on MCTS, PPO, and CSVM, assume full
observability of the environment, omitting critical aspects
like radar target searching [1], [88], [166]. Techniques
capable of handling partial observability, such as KAERS
in BVR scenarios, offer promising solutions for enhancing
model robustness and real-world applicability [57].
Computational Intensity: Approaches like MCTS, while

effective, are computationally expensive and
time-consuming [88]. Optimizing methods for continuous
action spaces and improving computational efficiency is
essential for real-time applications. Recent efforts, such
as enhancing TD3 algorithms for missile engagement and
evasion, demonstrate progress in this area [86].
Sensitivity to Initial Conditions: Techniques using cur-

riculum learning and IQN often perform poorly under unfa-
vorable initial configurations [59], [167]. Robust curriculum
designs and adaptive learning rates, as seen in evolving BTs
with GP, offer potential strategies for mitigating sensitivity
and improving generalization [49].
Scalability and Real-Time Adaptability: Scalability

remains a challenge for multi-agent approaches and hierar-
chical frameworks, such as MAPPO and H3E, particularly in
dynamic and large-scale environments [2], [105]. Efficient
methods are needed to handle cooperative scenarios,
as demonstrated in TA research [96], [146].
Incorporation of Uncertainties: Many existing methods,

such as those based on game theory, BNs, and SL, assume
deterministic environments [1], [76]. Incorporating stochastic
elements and uncertainties into these models will improve
their realism and applicability to complex air combat
scenarios.
Validation in Diverse Scenarios: Techniques like SAE

networks for TCR and DRL-based UAV swarm models
have largely been tested in static environments [108], [141].
Expanding validation to dynamic and high-dimensional
scenarios, including real-time decision-making and varied
combat conditions, is essential. Studies employing ANN and
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TABLE 2. Overview of simulation tools in BVR air combat research.

granular computing approaches for cooperative air combat
highlight promising steps in this direction [61], [151].
Interdisciplinary Approaches: Combining RL, Deep

Learning (DL), and control theory can significantly enhance
decision-making models for BVR combat. Integrating these
methods allows adaptive strategies while adhering to physical
constraints. For instance, hierarchical RL and BTs provide
scalable frameworks for managing high-level tactics and low-
level maneuvers [48], [61]. Such interdisciplinary methods
will foster more robust and interpretable models.
Enhancing Training Efficiency: GP shows promise for

optimizing strategies, but challenges remain in handling
low-dimensional problems and reducing computational over-
head. Curriculum-based RL and techniques for recognizing
enemy intent can significantly improve learning efficiency
and decision-making capabilities [54].
Real-World Applicability: Ensuring the real-world viabil-

ity of advanced methods requires extensive validation in
high-fidelity simulations. Collaboration with military and
aerospace organizations can bridge the gap between research
and operational deployment. Existing tools for swarm

strategies and cooperative UCAV operations demonstrate the
value of simulation for practical testing [105], [108].
Future Trends in Simulation Tools: Simulation tools must

evolve to meet research demands as BVR combat scenarios
grow in complexity. Key trends include:

• Higher-Fidelity Multi-Agent Simulations: Supporting
larger-scale swarm coordination and high-fidelity real-
time simulations on platforms like AFSIM, ASA, DCS
WORLD, and FLSC.

• Increased Interoperability: Using standards like HLA
and DIS to integrate simulations across heterogeneous
systems (e.g., manned aircraft, drones, and missiles).

• AI and ML Integration: Embedding adaptive AI
agents for real-time mission planning and decision-
making [105].

• Higher Computational Efficiency: Optimizing simu-
lations to handle growing complexity while enabling
real-time adaptability.

By addressing these challenges, future research can
develop sophisticated, scalable, and adaptable BVR decision-
making models. Addressing these challenges will pave the
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way for robust autonomous systems capable of adapting
and thriving in highly dynamic and contested air combat
environments.

VI. CONCLUSION
This survey reviewed over 120 research papers on
the application of simulation and ML techniques in
BVR air combat. We categorized the literature based
on key methodologies and application areas, empha-
sizing advancements in threat assessment, engagement
strategies, and autonomous UAV control. Additionally,
we underscored the pivotal role of simulation environ-
ments in modeling complex BVR scenarios, validating
strategic approaches, and developing effective training
programs, decision-making algorithms, and autonomous
systems.

While significant progress has been made, our review
identified several critical challenges that persist. These
include ensuring scalability, achieving real-time adaptabil-
ity, and managing multi-agent coordination in dynamic
combat environments. Addressing computational efficiency,
simulation fidelity, and the incorporation of uncertainty
remains essential for the practical deployment of advanced
techniques.

Future research should focus on integrating traditional
simulation frameworks with AI-driven methods to overcome
these challenges. Combining DL, RL, and control-theoretic
approaches holds promise for creating sophisticated, scal-
able, and interpretable BVR combat systems.

Ultimately, this survey highlights the necessity of advanced
tools and ML techniques in shaping the future of BVR
air combat. By enhancing both human decision-making and
autonomous capabilities, these innovations will enable air
forces to operate effectively in increasingly contested and
complex operational environments.
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