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Abstract. Using an enhanced Self-Organizing Map method, we provided sub-
optimal solutions to the Traveling Salesman Problem. Besides, we employed
hyperparameter tuning to identify the most critical features in the algorithm.
All improvements in the benchmark work brought consistent results and may in-
spire future efforts to improve this algorithm and apply it to different problems.

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most studied routing problems
within the combinatorial optimization field [Laporte 1992], which is defined as a sales-
man that must visit a series of cities once and only once, returning to the starting
city [Brocki and Koržinek 2007]. Although coming from a relatively simple idea, find-
ing the solution for the problem, i.e., the shortest path, is NP-Hard [Huang et al. 2017],
thence the great interest to find efficient ways to solve it.

Due to the problem’s complexity and to the fact that many of its applica-
tions require fast ways to solve it, it is common to employ heuristics to generate ap-
proximate (suboptimal) solutions to the TSP. Examples of these methods are Genetic
Algorithm (GA), Simulated Annealing (SA), tabu search, and ant colony optimiza-
tion [Xu et al. 2008, Calado and Ladeira 2011]. Another form to find approximate solu-
tions to complex optimization problems is to use neural networks [Peterson 1990], which
can be efficient due to their adaptability.

According to the literature, the first neural network solution for the TSP was the
one presented in [Hopfield and Tank 1985], based on the minimization of an energy func-
tion. From that, many methods have been proposed to improve the Hopfield neural net-
work [Xu et al. 2008]. Another use of neural networks for solving the TSP is the one
proposed in [Kohonen 1998] through competitive unsupervised learning based on winner-
take-all and winner-take-most algorithms, also called Self-Organizing Map (SOM), due to
how the adaptation of the neurons works [Brocki and Koržinek 2007]. The SOM adjusts
its neurons to fit the input cooperatively by inspecting the list of cities. This localized
response to the input list generates a neighborhood preserving map, resulting in a near-
optimal path [Xu et al. 2008].



In summary, most of the TSP heuristics solutions in the literature have
used one of the following methods: Hopfield network, Kohonen’s SOM, GA, and
SA [Markovic et al. 2012]. In comparison with other heuristic methods, the SOM has
presented low computation complexity and promising performance. Therefore, these neu-
ral networks have attracted researchers to explore and enhance their performance when
applied to the TSP [Favata and Walker 1991, Budinich 1996].

In our work, the main contribution is to modify the method of SOM as proposed
and implemented in [Martin 2018], adding some features and tuning hyperparameters.
We offer these modifications to solve a particular problem involving TSPs varying in size
from 50 to 200. The remainder of this paper is structured as follows: Section 2 provides
details with respect to the experiment setting; Section 3 states the improvements on the
method for this context; Section 4 presents the results obtained; Section 5 brings the
conclusions and the possible future work.

2. Experiment
The proposed experiment aimed at predicting edges belonging to optimal solutions of
2,000 two-dimensional Euclidean TSP ranging from 50 to 200 city nodes. We evaluate
the solution considering the F1 score of the predicted adjacency matrix compared to the
optimal solution. The F1 score is the harmonic mean of the precision and recall, where
an F1 score reaches its best value at 1 and worst score at 0 [Zhang et al. 2015]. The
relative contribution of precision and recall to the F1 score is equal, which is preferred
over accuracy as this problem is often very imbalanced [Mele et al. 2021].

3. Improvements
In this section, we discuss the main improvements performed in the method adopted. We
employ hyperparameter tuning to adapt the algorithm. Besides, we created two additional
features to find solutions with better results.

3.1. Hyperparameter Tuning

When exploring the algorithm used in this work, we first identified its primary hyperpa-
rameters (population size, number of iterations, learning rate, and discount rates for the
latter two) and their effects on the final scores. To understand the influence of each of
these factors and find their best configuration, we employed a single-factor design to tune
the proposed technique, i.e., varying approximately one feature at a time to examine its
isolated influence. The search for the hyperparameters that better suit the dataset led us
to the baseline algorithm, which received all modifications discussed next.

3.2. Additional Modifications

The first improvement to the baseline algorithm was to change the way to choose the first
node considered. The standard technique randomly selects the starting point, which may
lead the solution into a local minimum, depending on the location of this first node. In
addition to the randomly chosen initial city, we forced the algorithm to start from the
city in the centermost position and the furthest position from the centroid of all cities.
After running the algorithm in these three different initial positions, we chose the one that
presents the shortest path.



As the second modification, after employing the hyperparameters tuning and iden-
tifying the most significant feature as the population size, we improved the algorithm
based on the variation of this hyperparameter in each SOM iteration. Figure 1 exempli-
fies the SOM iterations until the result with the shortest path is obtained. We used 20
different population sizes in each TSP, from 1 to 20 times the number of cities, and we
calculated the route length of all of these TSP solutions, choosing the one with the short-
est path. Indeed, that additional feature turned the process computationally more costly.
However, it brought better results since the population size was constantly changing, and
we chose the one that produced the shortest distance in all solutions.

Figure 1. SOM algorithm iteration samples.

4. Results

Table 1 shows the F1 Scores results of the hyperparameters tuning and clarifies the impor-
tance of the population size feature. We chose as our baseline the following configuration:
100,000 iterations, 0.9997 for the discount rate of initial neighborhood, 0.8 for the learn-
ing rate, 0.99997 for the discount rate of the learning rate, and 6 for the population size
multiplier factor.

Table 1. Hyperparameters tuning with F1 scores

Number of Discount Rate of Learning Discount Rate of Population Size F1
Iterations Initial Neighborhood Rate Learning Rate Multiplier Factor Score

100 0.9997 0.8 0.99997 8 0.06878
100,000 0.9997 0.8 0.99997 8 0.07800
100,000 0.9997 0.8 0.99997 16 0.07784
100,000 0.9997 0.8 0.99997 4 0.07855
100,000 0.9997 0.8 0.99997 2 0.07853
100,000 0.9997 0.8 0.99997 6 0.07885
100,000 0.9997 0.8 0.99997 5 0.07869
100,000 0.99997 0.8 0.99997 6 0.07854
100,000 0.997 0.8 0.99997 6 0.07834
100,000 0.997 0.01 1.00000 6 0.07769
100,000 0.9997 0.8 0.99997 7 0.07878

After choosing the baseline hyperparameter configuration, we employed the ad-
ditional modifications described in subsection 3.2, achieving slightly better results with
0.07891 of the evaluation metric proposed. Therefore, these results show that, through
subtle and well-planned changes in algorithms already consolidated by the scientific com-
munity, it is possible to obtain better results in classical optimization problems.



5. Conclusions
This work brings an enhanced way to use SOM to find suboptimal solutions for the TSP.
Firstly, we employ hyperparameter tuning to identify the baseline algorithm configura-
tion. Secondly, we combined two different modifications to the benchmark technique,
leading to consistent route length results. For future work, we suggest additional improve-
ments, mainly considering the stochastic aspects of the method, and advanced techniques
to choose the best hyperparameters, which may bring better results to the SOM algorithm.
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