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Introduction

= Air Combat Types: Within Visual Range (WVR) and Beyond Visual Range (BVR).

= Beyond Visual Range Air Combat: allows pilots to engage adversaries without
direct visual contact (=~ 40 nautical miles).

= Technological Advancements: The face of modern warfare is changing rapidly
due to the emergence of advanced sensors and weapons that provide superior
battlefield awareness and unique capabilities.

= Artificial Intelligence in Air Combat: The advent of the Al era has led to the
increasing involvement of Unmanned Combat Aerial Vehicles (UCAVs), adding a
new dimension to air combat scenarios.

Contributions

= I[nnovative Al Design: \We propose a novel Deep Reinforcement Learning
(DRL) Al fighter specifically tailored for BVR air combat scenarios.

= Continuous Improvement: By incorporating an operational metric-based
learning approach, our Al fighter represents a high-performance aircraft that
evolves and enhances its capabilities over time.

= New Air Combat Tactics: The model enables the development of innovative
alr combat tactics through rigorous self-play experiments.

= Shared Airspace: Interactions between real pilots and trained Al agents
within a high-fidelity virtual simulation environment.

Related Work

= Several recent studies have utilized DRL algorithms for autonomous
decision-making in BVR air combat for various applications:

= Generation of air combat tactics (Piao et al., 2020).
= Maneuver planning (Zhang et al., 2022; Fan et al., 2022).
= Multi-UAV cooperative decision-making methods (Liu et al., 2022; Hu et al., 2022).
= These works demonstrate the potential of DRL-based approaches in BVR air

combat scenarios.

= Despite promising results, there is a need to develop more robust algorithms
and assess the feasibility of these methods in real-world applications.

= Our work differs by applying DRL to BVR air combat using a high-fidelity
simulation environment.

= To the best of our knowledge, no study has combined DRL with self-play
technigues to train a high-performance agent that can interact with real pilots
in the same simulation environment.

"This Is the first work to propose a self-learning autonomous agent capable of master-
ing BVR air combat procedures and interacting with real fighter pilots in a high-fidelity
simulation environment.”

Aerospace Simulation Environment

= Aerospace Simulation Environment — Ambiente de Simulacdo Aeroespacial in
Portuguese (Dantas et al., 2022).

= Custom-made in C++ for advanced programming flexibility.

= High-fidelity representation for accurate scenario reproduction.

= Supported by the Brazilian Air Force.

= Dedicated to modeling and simulation of military operational scenarios.
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Proposed Model
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Figure 1. Agent-environment interaction: a(t), s(t), and r(t) denote action, state, and reward at
time step t, with s(t 4+ 1) given by the environment for the next iteraction.

= Action a(t)
= CAP

= Keeping an orbit to monitor a specific area for enemy
aircraft (Combat Air Patrol).

= State s(t)

» |ndependent motion variables

= COMMIT = Position [p,(t), p,(t), p.(t)].
= Switching to an offensive posture to threaten a key target. = Velocity [v,(t), v,(t), v.(t)].
= ABORT = Orientation [roll ¢(t), pitch 0(t), yaw 1 (¢)].

= Comparative factors agent-target
= Relative distance Ad(t).

= Shifting from offense to defense due to threats, loss of
awareness, or task completion.

= BREAK = Relative speed Auv(t).
= Employing a final defense when threats exceed safety = Relative angle Aa(t).
parameters. = Agent’s conditions
= FIRE = Remaining fuel f(t).
= Meeting conditions to launch weapons against the = Remaining missiles mi(t).
enemy. = Health condition h(t).
= SUPPORT = Sensors’ status ss(t).

= Using radar to support the missile to the target,
improving the success chances.

= Reward r(t)
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Figure 2. The factors of the Defensive Counter Air Index (Ipc4). Source: Dantas et al. (2021).

Cutting-Edge Algorithm
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performance (Hessel et al., 2018).
= Combines several improvements
to the Deep Q-Network (DQN)
algorithm (Mnih et al., 2015) for

superior results.

= Subject Matter Expert Yy
Knowledge R sho
= Enhances both the exploration R
and exploitation steps.
= Assists in shaping reward
functions tailored for each
application.
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Figure 3. Median human-normalized performance across
57 Atari games, comparing the performance of the
Rainbow algorithm (rainbow-colored) to DQN (grey) and
six published baselines. Source: Hessel et al. (2018)

Conclusion

= Training Enhancement: We aim to enhance the quality of air combat training
by developing UCAVS.

= Advancing Al: Our efforts are dedicated to advancing Al fighters that can
support pilots as Wingmen and potentially even replace them in complex
combat scenarios.

= Unified Framework: \We aspire to establish a Simulation-as-a-Service (Simaa$)
platform to meet the diverse simulation demands of the aerospace and defense
sectors.

* Future Work

= Execution of Turing Tests in collaboration with Brazilian fighter pilots to assess the
competencies of the Al fighter.

= |ncorporate the feedback gathered from the human pilots to iteratively enhance the Al
fighter’'s operational performance and adaptability in real-world scenarios.
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