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Introduction

Air Combat Types: Within Visual Range (WVR) and Beyond Visual Range (BVR).

Beyond Visual Range Air Combat: allows pilots to engage adversaries without

direct visual contact (≈ 40 nautical miles).
Technological Advancements: The face of modern warfare is changing rapidly

due to the emergence of advanced sensors and weapons that provide superior

battlefield awareness and unique capabilities.

Artificial Intelligence in Air Combat: The advent of the AI era has led to the

increasing involvement of Unmanned Combat Aerial Vehicles (UCAVs), adding a

new dimension to air combat scenarios.

Contributions

Innovative AI Design: We propose a novel Deep Reinforcement Learning

(DRL) AI fighter specifically tailored for BVR air combat scenarios.

Continuous Improvement: By incorporating an operational metric-based

learning approach, our AI fighter represents a high-performance aircraft that

evolves and enhances its capabilities over time.

NewAir Combat Tactics: The model enables the development of innovative

air combat tactics through rigorous self-play experiments.

Shared Airspace: Interactions between real pilots and trained AI agents

within a high-fidelity virtual simulation environment.

RelatedWork

Several recent studies have utilized DRL algorithms for autonomous
decision-making in BVR air combat for various applications:

Generation of air combat tactics (Piao et al., 2020).

Maneuver planning (Zhang et al., 2022; Fan et al., 2022).

Multi-UAV cooperative decision-making methods (Liu et al., 2022; Hu et al., 2022).

These works demonstrate the potential of DRL-based approaches in BVR air

combat scenarios.

Despite promising results, there is a need to develop more robust algorithms

and assess the feasibility of these methods in real-world applications.

Our work differs by applying DRL to BVR air combat using a high-fidelity

simulation environment.

To the best of our knowledge, no study has combined DRL with self-play

techniques to train a high-performance agent that can interact with real pilots

in the same simulation environment.

”This is the first work to propose a self-learning autonomous agent capable of master-

ing BVR air combat procedures and interacting with real fighter pilots in a high-fidelity

simulation environment.”

Aerospace Simulation Environment

Aerospace Simulation Environment – Ambiente de Simulação Aeroespacial in

Portuguese (Dantas et al., 2022).

Custom-made in C++ for advanced programming flexibility.

High-fidelity representation for accurate scenario reproduction.

Supported by the Brazilian Air Force.

Dedicated to modeling and simulation of military operational scenarios.

Proposed Model

ACTIONS

Action: 𝑎𝑎(𝑡𝑡)
State: 𝑠𝑠(𝑡𝑡)

OBSERVATIONS
State changes: 𝑠𝑠(𝑡𝑡 + 1)

Reward: 𝑟𝑟(𝑡𝑡)
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Figure 1. Agent-environment interaction: a(t), s(t), and r(t) denote action, state, and reward at
time step t, with s(t + 1) given by the environment for the next iteraction.

Action a(t)
CAP

Keeping an orbit to monitor a specific area for enemy

aircraft (Combat Air Patrol).

COMMIT

Switching to an offensive posture to threaten a key target.

ABORT

Shifting from offense to defense due to threats, loss of

awareness, or task completion.

BREAK

Employing a final defense when threats exceed safety

parameters.

FIRE

Meeting conditions to launch weapons against the

enemy.

SUPPORT

Using radar to support the missile to the target,

improving the success chances.

State s(t)
Independent motion variables

Position [px(t), py(t), pz(t)].
Velocity [vx(t), vy(t), vz(t)].
Orientation [roll φ(t), pitch θ(t), yaw ψ(t)].

Comparative factors agent-target

Relative distance ∆d(t).
Relative speed ∆v(t).
Relative angle ∆α(t).

Agent’s conditions

Remaining fuel f (t).
Remaining missiles m(t).
Health condition h(t).
Sensors’ status ss(t).

Reward r(t)

di =
(y99%,i − y1%,i)
(x99%,i − x1%,i)

· [D(i, CAP ) − x1%,i] + y1%,i

IDCA = w1 · mavail

mtotal
+ w2 · 1

1 + exp(−dr)
+w3 · 1

N

N∑
n=1

1
1 + exp(−den)

Figure 2. The factors of the Defensive Counter Air Index (IDCA). Source: Dantas et al. (2021).

Cutting-Edge Algorithm

Rainbow Algorithm
Provides state-of-the-art

performance (Hessel et al., 2018).

Combines several improvements

to the Deep Q-Network (DQN)

algorithm (Mnih et al., 2015) for

superior results.

Subject Matter Expert
Knowledge
Enhances both the exploration

and exploitation steps.

Assists in shaping reward

functions tailored for each

application.

Rainbow: Combining Improvements in Deep Reinforcement Learning
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Abstract

The deep reinforcement learning community has made sev-
eral independent improvements to the DQN algorithm. How-
ever, it is unclear which of these extensions are complemen-
tary and can be fruitfully combined. This paper examines
six extensions to the DQN algorithm and empirically studies
their combination. Our experiments show that the combina-
tion provides state-of-the-art performance on the Atari 2600
benchmark, both in terms of data efficiency and final perfor-
mance. We also provide results from a detailed ablation study
that shows the contribution of each component to overall per-
formance.

Introduction
The many recent successes in scaling reinforcement learn-
ing (RL) to complex sequential decision-making problems
were kick-started by the Deep Q-Networks algorithm (DQN;
Mnih et al. 2013, 2015). Its combination of Q-learning with
convolutional neural networks and experience replay en-
abled it to learn, from raw pixels, how to play many Atari
games at human-level performance. Since then, many exten-
sions have been proposed that enhance its speed or stability.

Double DQN (DDQN; van Hasselt, Guez, and Silver
2016) addresses an overestimation bias of Q-learning (van
Hasselt 2010), by decoupling selection and evaluation of
the bootstrap action. Prioritized experience replay (Schaul
et al. 2015) improves data efficiency, by replaying more of-
ten transitions from which there is more to learn. The du-
eling network architecture (Wang et al. 2016) helps to gen-
eralize across actions by separately representing state val-
ues and action advantages. Learning from multi-step boot-
strap targets (Sutton 1988; Sutton and Barto 1998), as used
in A3C (Mnih et al. 2016), shifts the bias-variance trade-
off and helps to propagate newly observed rewards faster to
earlier visited states. Distributional Q-learning (Bellemare,
Dabney, and Munos 2017) learns a categorical distribution
of discounted returns, instead of estimating the mean. Noisy
DQN (Fortunato et al. 2017) uses stochastic network layers
for exploration. This list is, of course, far from exhaustive.

Each of these algorithms enables substantial performance
improvements in isolation. Since they do so by addressing

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Median human-normalized performance across
57 Atari games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.

radically different issues, and since they build on a shared
framework, they could plausibly be combined. In some cases
this has been done: Prioritized DDQN and Dueling DDQN
both use double Q-learning, and Dueling DDQN was also
combined with prioritized experience replay. In this paper
we propose to study an agent that combines all the afore-
mentioned ingredients. We show how these different ideas
can be integrated, and that they are indeed largely com-
plementary. In fact, their combination results in new state-
of-the-art results on the benchmark suite of 57 Atari 2600
games from the Arcade Learning Environment (Bellemare et
al. 2013), both in terms of data efficiency and of final perfor-
mance. Finally we show results from ablation studies to help
understand the contributions of the different components.
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Figure 3. Median human-normalized performance across

57 Atari games, comparing the performance of the

Rainbow algorithm (rainbow-colored) to DQN (grey) and

six published baselines. Source: Hessel et al. (2018)

.

Conclusion

Training Enhancement: We aim to enhance the quality of air combat training

by developing UCAVs.

Advancing AI: Our efforts are dedicated to advancing AI fighters that can

support pilots as Wingmen and potentially even replace them in complex

combat scenarios.

Unified Framework: We aspire to establish a Simulation-as-a-Service (SimaaS)

platform to meet the diverse simulation demands of the aerospace and defense

sectors.

Future Work
Execution of Turing Tests in collaboration with Brazilian fighter pilots to assess the

competencies of the AI fighter.

Incorporate the feedback gathered from the human pilots to iteratively enhance the AI

fighter’s operational performance and adaptability in real-world scenarios.
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