

Real-Time Surface-to-Air Missile Engagement Zone Prediction Using Simulation and Machine Learning

Joao P. A. Dantas, Capt. – Brazilian Air Force

dantasjpad@fab.mil.br www.joaopadantas.com

Agenda

- Introduction
- Related Work
- Simulation and Analysis Tools
- Methodology
- Results
- Conclusion and Future Work

Introduction

- Surface-to-Air Missile in Modern (SAM) Air Defense
 - Essential component of modern air defense systems
 - Main function: Defend against airborne threats
- Engagement Zone (EZ)
 - Definition: Region where SAM can engage and eliminate a target
 - Importance: Crucial for military strategies
 - o Influencing factors
 - Missile systems (propulsion and guidance)
 - Target characteristics (speed, altitude, evasive maneuvers)

Introduction

- Traditional Simulation Challenges
 - **High** computational costs
 - \circ Long processing times
 - $_{\odot}$ $\,$ Affects speed and effectiveness of defense strategies $\,$
- Machine Learning (ML) as a Solution
 - Optimizes complex computational processes
 - Address computational limitations in SAM EZ simulations
 - Integrates ML with custom simulation tools
 - Trains supervised algorithms for predictions

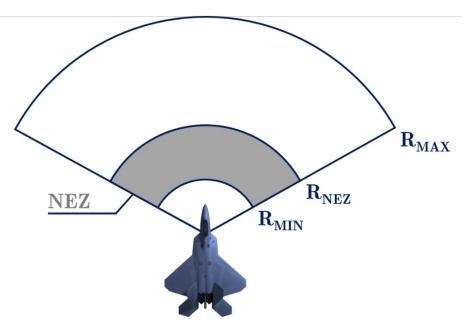
Introduction

- Main Contributions of this work
 - Demonstrates how machine learning can accelerate SAM EZ simulations
 - Enhances air defense strategies and SAM system performance with **real-time** insights
 - Merges simulation with machine learning for a dynamic military strategy, promoting informed decisions
 - Provides a comparative study of machine learning algorithms, focusing on performance, training, and inference times
 - o Identifies strengths and areas for improvement in these algorithms

Related Work

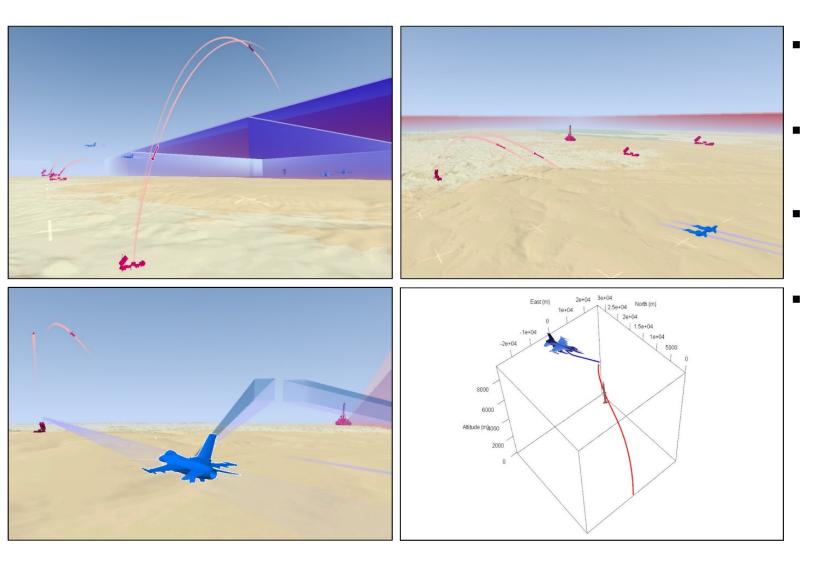
Traditional Methods

- Philips (1991): Advocated for Monte-Carlo simulations
- Farlik et al. (2017): Modeled missile system fire capabilities for military training
- Li et al. (2020): Refined air-to-air missile attack zones using advanced mathematical methods
- Machine Learning Applications
 - Yoon et al. (2010): Wavelet Neural Network
 - Birkmire (2011): Multilayer Perceptron
 - **Dantas et al. (2021): Deep Neural Network**



Simplified air-to-air missile's Engagement Zone representation

Simulation and Analysis Tools



@IITSEC

NTSAToday

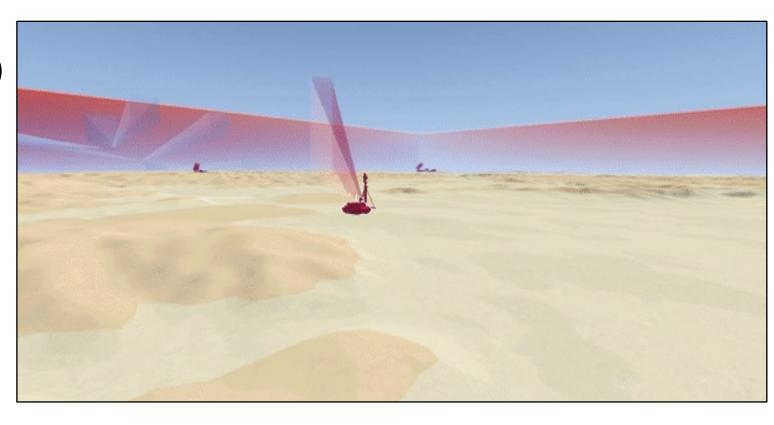
- Constructed using **R** programming language
- Leverages R's statistical and graphical capabilities
- Based on a **5-degree-of-freedom** model for **Fox 3** missile simulation

Features

- Proportional navigation
- Aggressive post-launch climb (loft maneuver)
- Models both stationary and maneuvering targets

Simulation and Analysis Tools

- Aerospace Simulation
 Environment Ambiente de
 Simulação Aeroespacial (ASA)
 in Portuguese (Dantas et al. 2022)
- Custom-made in C++ for advanced programming flexibility
- High-fidelity representation for accurate scenario reproduction
- Supported by the Brazilian Air Force
- Dedicated to modeling and simulation of military operational scenarios

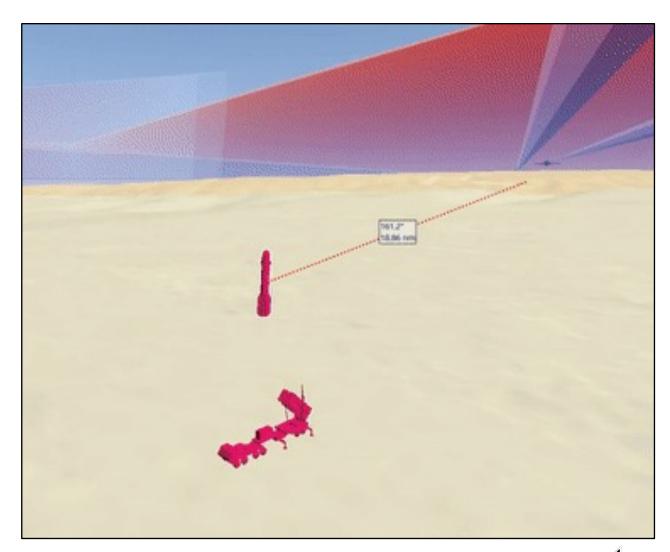


- Used the simulation tool for estimating the maximum range of two SAMs
 - SAM₁ (medium-range engagements)
 - SAM₂ (long-range engagements against ballistic missiles)
- Parameters Considered
 - Target elevation relative to the launcher (x_1) : -5,000 ft to 45,000 ft
 - Target speed $(\mathbf{x_2})$: 200 kt to 850 kt
 - Absolute value of target aspect angle relative to the launcher (x_3) : 0° to 180°
 - $_{\circ}$ Tool calculates missile's maximum range (y) based on these parameters
 - Targets modeled as passive aircraft, maintaining consistent speed and altitude

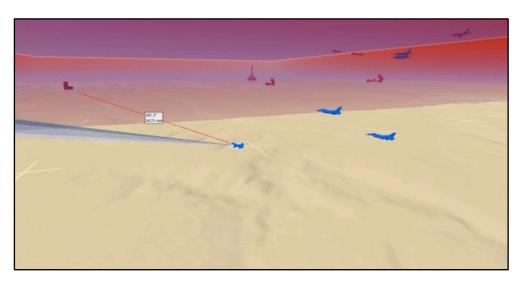
- Data Sampling
 - Generated **5,000** maximum range samples for each SAM: Latin Hypercube Sampling
 - $_{\odot}$ Each sample included values for: $x_{1},\,x_{2},\,x_{3},$ and a corresponding y value
 - Experiments run on Intel Xeon Gold 6230R CPU (2.10GHz, 64 GB RAM)
 - Split aspect angle range into five intervals: [0°, 144°), [144°, 153°), [153°, 162°), [162°, 171°), [171°, 180°)

	Target elevation relative to the launcher (x1) in ft	Target speed (x2) in kt	Absolute value of target aspect angle relative to the launcher (x3) in degrees
1	23993.2581011245	419.844499827809	109.627997544374
2	35699.9004737164	692.667248013255	4.02976322527975
3	24230.6916546814	353.870903029134	87.2440944781601
4	4273.33746293637	245.15537008238	123.093129392143
5	-1627.42513800816	554.487796150901	129.260288483854

- Development of New EZ Models
 - Artificial Neural Network (ANN),
 Random Forest Regressor (RFR),
 and Polynomial Regression (PR)
 - Allocated 80% of samples for model training and validation
 - Used 5-fold cross-validation for training and validation
 - Reserved 20% samples for model testing



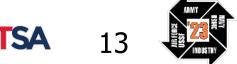
- Model Assessment
 - Primary objective: Identify model with the low prediction errors and processing time
 - Employed various metrics for in-depth model comparison
 - Evaluated benefits of a singular EZ model versus separate models for five distinct aspect angle sectors [0°, 180°) vs [0°, 144°), [144°, 153°), [153°, 162°), [162°, 171°), [171°, 180°)
 - $_{\odot}$ $\,$ Compared models derived from ANN , RFR, and PR $\,$



Results

SAM System Overview

- $_{\odot}$ Utilized two SAM systems, SAM₁ and SAM₂
- Integrated **5** distinct sample sets for each SAM system
- $_{\circ}$ Introduced a sixth sample set, combining the original five, spanning from 0° to 180°
- 3 different machine learning methods
- Generated a total of **36** predictive models, with **18** models for each SAM type
- Performance Metrics
 - Coefficient of Determination (R²)
 - Root Mean Squared Error (RMSE) in nautical miles (nm)
 - Mean Absolute Percentage Error (MAPE)
 - Processing Time (PT) in seconds

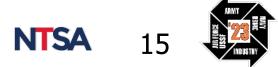


Results

- Testing Phase Highlights
 - Performance metrics compared using the remaining **20%** of the sample sets
 - Among models, **ANN and RFR often outperform PR** in R² across most sectors
 - For RMSE, ANN excels in SAM₁, whereas PR and RFR are superior in SAM₂
 - MAPE metrics display varied results, with PR often having the highest error in SAM₁ but excelling in SAM₂
 - In terms of processing time (PT), RFR demonstrates consistent speed across all sectors in both SAM₁ and SAM₂, highlighting its computational efficiency
 - Estimation times of all models are below the **0.01 seconds** threshold
 - The simulation tool takes considerably longer (around **34 seconds**) for similar estimations

Conclusion and Future Work

- Key Findings
 - Machine learning boosts efficiency & speed of SAM EZ simulations
 - Overcomes traditional computational limitations in defense strategy planning
 - Successful integration of ML with custom simulation tools: Precise & efficient SAM EZ predictions
- Analysis Highlights
 - PR: Low prediction error, room to improve processing speed
 - RFR: Best processing time efficiency with strong error reduction
 - $_{\odot}$ ANN: Good error reduction, slower than RFR



Conclusion and Future Work

Challenges

- Need for vast training data & risk of model overfitting
- Emphasis on constant evaluation & refinement
- Future Directions:
 - Optimize ML models for faster processing & better accuracy
 - Integrate newer ML models for potential improvements
 - Address challenges: Efficient data augmentation & model regularization

