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ABSTRACT

AsaPy is a custom-made Python library designed to simplify and
optimize the analysis of aerospace simulation data. Instead of in-
troducing new methodologies, it excels in combining various estab-
lished techniques, creating a unified, specialized platform. It offers a
range of features, including the design of experiment methods, sta-
tistical analysis techniques, machine learning algorithms, and data
visualization tools. AsaPy’s flexibility and customizability make it a
viable solution for engineers and researchers who need to quickly
gain insights into aerospace simulations. AsaPy is built on top of
popular scientific computing libraries, ensuring high performance
and scalability. In this work, we provide an overview of the key
features and capabilities of AsaPy, followed by an exposition of its
architecture and demonstrations of its effectiveness through some
use cases applied in military operational simulations. We also evalu-
ate how other simulation tools deal with data science, highlighting
AsaPy’s strengths and advantages. Finally, we discuss potential use
cases and applications of AsaPy and outline future directions for
the development and improvement of the library.
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1 INTRODUCTION

The application of simulation technologies in aerospace has signifi-
cantly expanded, notably in commercial aviation, space exploration,
and particularly in the military realm [10]. This shift from live ex-
ercises to simulation is due to multiple reasons, including cost
reduction and increased safety [20]. Simulation may be used for
designing, testing, and optimizing complex systems such as aircraft,
radars, and weapons [13]. However, the vast amount of simula-
tion data generated can be overwhelming, making the analysis
process time-consuming and challenging, which may require more
sophisticated algorithms and tools [15, 18]. In response, AsaPy, a
custom-made Python library, was designed in the context of the
Aerospace Simulation Environment (Ambiente de Simulagdo Aeroes-
pacial — ASA in Portuguese) [14, 16] to simplify and expedite the
analysis of military simulation data to support the decision-making
process.

Rather than introducing new methods, AsaPy specializes in inte-
grating a range of established techniques into a cohesive and spe-
cialized toolkit, adept at meeting the complex needs of aerospace
data analysis. AsaPy offers a comprehensive pipeline of routines
that typically would be performed step by step by researchers, in-
cluding pre-checks before employing a specific analysis method, for
example. Integrating processes into a single workflow makes AsaPy
accessible even to those not proficient in programming, enabling
them to apply robust analysis to aerospace data. The library includes
features such as experimental design methods, statistical analysis,
machine learning algorithms, and data visualization tools. This
array of tools allows engineers and researchers to extract valuable
insights from aerospace simulations, applicable not just in military
scenarios but also in civilian and commercial aerospace sectors.
Initially developed to operate alongside ASA, AsaPy’s adaptable
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architecture also supports its use with other simulation frame-
works, as will be demonstrated in the use cases section, evidenced
by its integration of recognized scientific computing libraries like
NumPy [28], SciPy [50], and Scikit-learn [40], ensuring both high
performance and scalability.

The main contribution of this work is to provide an overview
of the key features and capabilities of AsaPy, including its struc-
ture, effectiveness, and potential applications, mainly for analyzing
aerospace and military simulation data. We also review some of
the available simulation software, focusing on what data science
capabilities they provide. Additionally, we bring some use cases
to the AsaPy library applied to the defense context. Finally, we
outline future directions for the development and improvement of
the library. We have provided a link to AsaPy and hope that this
library proves beneficial for other analysis projects.

2 RELATED WORK

Being conceived as a part of the ASA suite, AsaPy provides an
integrated solution for data science activities within a Computer-
Generated Forces (CGF) package. In this context, we focused on
evaluating existing CGF tools with respect to their data science
features. This evaluation was made following a similar methodology
as seen in Abdellaoui et al. [2] and Toubman et al. [47]. Additionally,
we provide an overview of the research background on data farming
and Knowledge Discovery in Simulation data (KDS), fundamental
concepts for the development of AsaPy.

2.1 Existing Solutions

Abdellaoui et al. [2] conducted a similar analysis and comparison of
various modeling and simulation packages, with particular empha-
sis on their artificial intelligence (AI) capabilities. The evaluation
was based on five crucial factors: architecture, autonomous opera-
tion, learning, organization, and realism. Despite the comprehensive
nature of the study, notice that the authors only briefly touched on
the role of data science in the context of these packages. Specifically,
they made a passing reference to the existence of entity databases
without delving into how data science principles might be applied
to analyze simulation results.

Toubman et al. [47] specifically examined the computer-generated
forces (CGF) learning capabilities. Although they suggested using
data for machine learning algorithms to extract behavior rules and
apply them to new situations, their study did not address how com-
mercial off-the-shelf (COTS) and government off-the-shelf (GOTS)
products handle this approach. Moreover, they did not discuss how
to analyze simulation data to derive general conclusions from sce-
nario results.

We aim to expand these analyses by evaluating the status of
data science capabilities within simulation packages, which would
benefit researchers and practitioners in this field. Therefore, we
conducted a survey of publicly available product information for
the same COTS products (GOTS were excluded since they are not
internationally available) as listed in Table 1, each of them briefly
described as follows.

Scenario Toolkit and Generation Environment (STAGE) [41] is a
stand-alone synthetic tactical simulation software that facilitates
the development of models for complex war scenarios involving
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Table 1: Mention of “Data Analysis” and “Design of Experi-
ments” (DoE), on the websites of seven COTS CGF packages
(in no particular order).

Product Company Mention of Mention of
Name Name Data Analysis DoE
STAGE Presagis No No
VR-Forces MAK Technologies No No
SWORD MASA No No
VBS4 Bohemia Interactive No No
DirectCGF Diginext No No
Steel Beasts Pro  eSim Games No No
FLAMES Ternion Yes Yes

various platforms such as avionics, naval, and land systems. The
software comes equipped with models of multiple sensors, including
radar, sonar, and missile warning systems, as well as weapons such
as missiles and guns [3].

VR-Forces [45] is a simulation environment that enables the
generation of multiple scenarios. The software is equipped with
features required for use as a tactical leadership trainer, a threat
generator, a behavior model test bed, or a Computer Generated
Forces (CGF) application [42].

SWORD [36] is a software suite comprising scenario creation
applications, aggregated constructive simulation, and analysis tools
specifically designed for staff training, education, classroom teach-
ing, planning support, analysis, operational research, and C2 system
stimulation. It is a comprehensive solution that allows simulation
of operations ranging from battalion to division level and is the
leading software provider in the market for training tactical level
land staffs [23].

Virtual Battlespace 4 (VBS4) [30] is a virtual and constructive
simulation platform that enables the creation and execution of
military training scenarios. Its workflow and features allow for
quick training initiation, simplified editing and updating of training
scenarios and terrains, and collaborative training simulations across
any location on its virtual Earth [25].

DirectCGF [22] is a battlespace generation software by DIG-
INEXT, which utilizes the simulation engine DirectSim. It comes
equipped with a collection of pre-built models such as platforms,
sensors, weapons, electronic warfare, and communication, along
with automatic and intelligent behavior. Its modular architecture
facilitates reusability and enhances productivity gains, as users can
integrate dedicated plug-ins into the system [48].

Steel Beasts [24] is a simulation tool that models armored warfare
scenarios. Military forces around the world use it to support train-
ing, mission rehearsal, and analysis of vehicle-centered scenarios
featuring gunners, commanders, and drivers [37].

FLAMES [46] is a range of products that offer a framework for
custom constructive simulations designed to meet the specific re-
quirements of the aerospace, defense, and transportation industries.
It includes customizable scenario creation, execution, visualization,
and analysis, as well as interfaces to constructive, virtual, and live
systems [39]. It is the only one of the reviewed COTS packages
that explicitly addressed the DoE and data analysis aspects, pro-
viding some options in its enhanced analysis option. Regarding
the DoE, it accepts a manual setup in tables, as well as importing
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experiment files defined by third-party tools. With respect to data
analysis, it also mentions third-party programs that can deal with
user-specified output files.

Besides these COTS products, we would like to mention a GOTS
package that is particularly relevant to the context of this paper. The
Advanced Framework for Simulation, Integration and Modeling (AF-
SIM) is an objected-oriented C++ library used to create simulations
in aerospace and defense contexts. It provides a range of features for
simulating and analyzing complex operational scenarios, including
air-to-air combat, air-to-ground strike, and reconnaissance mis-
sions [9]. With the focus on data science capabilities, we can point
out the Visual Environment for Scenario Preparation and Analysis
(VESPA), which supports creating scenario initial condition files
that are compatible with AFSIM-based applications, enabling its
usage as a DoE tool.

In summary, all the reviewed solutions lack an integrated ap-
proach with more comprehensive data science tools. FLAMES and
AFSIM seem to be the closest to what AsaPy aims to provide within
the context of ASA. However, they still rely on third-party pack-
ages and focus on data recording and visualization rather than the
analysis itself.

2.2 Related Concepts

Originally, the concept of data farming emerged in the context of
military simulations, providing decision-makers with the “Com-
mander’s Overview” for enhanced decision support [29]. By encom-
passing a broad spectrum of parameter spaces and having the ability
to explore both positive and negative effects, relationships, and po-
tential options, data farming may unveil aspects not previously
addressed in military simulation applications.

In other words, data farming has been employed to describe the
intentional generation of data from simulation models. Through
extensive designed experiments, one can efficiently and effectively
“cultivate” simulation output. This approach allows for exploring
vast input spaces and discovering noteworthy features in complex
simulation response surfaces. Embracing this innovative mindset
enables significant advancements in the scope, depth, and timely
acquisition of insights provided by simulation models [35].

There are three primary goals in data farming [32]: (i) develop-
ing a fundamental understanding of the simulation model and the
emulated system; (ii) identifying robust policies and decisions; and
(iii) comparing the merits of various policies or decisions. Well-
designed experiments prove to be efficient and effective tools for
achieving these objectives. Despite the exponential increase in pro-
cessing capabilities, the strategic design of experiments remains
essential for obtaining comprehensive insights through large-scale
simulation studies.

The KDS combines data farming with visual analytics-based
methods [26]. The idea is to start by defining experiments, focusing
on the selection of factors. Factors can encompass a wide array, in-
cluding structural, organizational, technical data, system load, and
material flow data. The number of factors, along with the lower and
upper-value limits for each factor, is chosen as expansively as pos-
sible unless they are evidently irrelevant or physically implausible.
For data generation, the simulation model is treated as a black box
that transforms a set of input factor values into output data. This
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output data is then stored in a simulation output database, where a
row of parameter values represents each experiment. Notably, ex-
periments can be easily distributed across parallel machines as they
are independent of each other. Once all experiments are conducted,
the data analysis phase can proceed. The initial analysis begins
with the simulation output data, and subsequently, knowledge is
derived, especially when exploring relationships between output
data and input factors. Well-suited visualizations play a crucial
role in establishing connections between corresponding input and
output sets, enabling users to investigate and draw conclusions.

Both data farming and its combination with visual analytics
(KDS) have been the basis for establishing AsaPy features, which
aim to provide means for not only intentionally generating simula-
tion data but also obtaining insights from this data.

3 STRUCTURE

From design, we aimed to develop a library that would help ana-
lyze simulation data, especially for military scenarios. In the ASA
context, we noted that the analyst tends to follow a pattern that
can be broken into four steps, shortly summarized:

(1) Design of Experiments, in which we define the input config-
uration for the executions;

(2) Execution Control, in which we monitor the progress of a
batch of executions;

(3) Analysis, in which we conduct the actual data analysis; and

(4) Prediction, in which we train a model to predict the outcome
of new input configurations.

The literature concerning data analysis is vast, therefore it is
important for our architecture not to limit the options available to
the analyst. For this reason, we opted to package existing Python li-
braries that implement the desired methods, leveraging the benefits
of this ecosystem and allowing easy interoperability.

Therefore, our structure consists of a curated set of third-party
libraries wrapped in a standardized and extensible way. The code
is divided into four modules: analysis, models, doe, and utils,
which roughly resembles the steps mentioned above.

With this architecture, illustrated in Figure 1, we allow the ana-
lysts to use the techniques independently or in combination or even
to extend the package with other desired methods. Furthermore,
we can automatize the process for the analyst, choosing reason-
ably appropriate tools for specific tasks, thus guiding his work to
conduct a proper analysis.

Although designed to be used integrated with other ASA suite
tools, AsaPy is generic with respect to the simulation machine
chosen to actually execute the scenarios and generate the data, as
discussed in Subsection 3.2. For illustration, the integration with
ASA service for parallel batch execution is implemented in the
asa-client package, which has features such as authentication
on the ASA platform, access to available scenarios, submission of
experiment executions, and retrieval of execution results, not the
focus of this work though.

In the following subsections, we discuss the techniques available
for each one of the mentioned steps, locating them in the library
structure.
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Figure 1: The structure of the AsaPy library in the perspective of the analyst workflow.

3.1 Design of Experiments

The Design of Experiments (DoE) step, enabled through the doe
module, integrates a comprehensive array of tools and features for
experimental design, as outlined in Montgomery [38]. Presently, the
module offers the Latin Hypercube Sampling (LHS) technique [6]
as its primary method. Plans to augment this suite with advanced
methods are underway, with particular emphasis on incorporating
the Nearly Orthogonal Latin Hypercube (NOLH) technique, a more
refined approach discussed in detail by Cioppa and Lucas [8].

This module is adept at managing various data types, including
numerical, categorical, and boolean. It is instrumental in gener-
ating input samples for diverse simulation executions. Typically,
these simulations run in batch mode, subject to fluctuating input
parameters. The module also includes strategies for orchestrating
metrics to assess simulation performance. This aspect is crucial
for making informed decisions about whether to prematurely halt
batch execution, a topic further explored in Subsection 3.2.

To utilize this tool effectively, analysts must specify which input
variables are subject to modification, either manually or via au-
tomation (as implemented in the asa-client using the ASA suite).
Following selecting an appropriate sampling technique, it generates
the configurations for execution, thereby channeling design points
into the subsequent phase of the process.

3.2 Execution Control

Once the scenarios are created and the input parameters assigned,
the next step is to run such experiments. Therefore, in this subsec-
tion, we discuss the control of the executions, including the process
of splitting the total amount of runs into chunks and evaluating
metrics to determine whether to stop the batch execution early.
In the military context, the desired analysis is usually complex,
requiring many executions to extract meaningful information. For
this reason, the individual runs are usually dispatched as a batch,
optimizing the usage of the computational resources available. How-
ever, often, not all executions planned are necessary for the analysis,
which unfortunately can only be known during its execution. The
large batch is broken into chunks of experiments to handle this

limitation. Then, each chunk is sequentially executed until com-
pletion using all the available computational resources. After each
chunk completion, the concerned metrics can be analyzed to decide
whether to stop the batch execution or start the next chunk. To
do so, one can observe the variation of the expected value of a
significant variable before and after running the last chunk. If it
is below a certain threshold, we can assume that this statistic has
converged, economizing on the number of individual executions.

Though naive, this heuristic, actually implemented by AsaPy,
demonstrates how to apply a method to early stop a batch execution,
saving time for the analyst and reducing the usage of the computa-
tional resources. Naturally, these evaluation metrics used for early
stop criteria will depend on the objectives of the simulation.

For instance, consider a scenario in the defense context where
simulations are conducted in batches to optimize the number of air-
craft needed to neutralize all enemy aircraft. Evaluation metrics for
each simulation might encompass the number of remaining enemy
aircraft and the number of missiles expended by the conclusion of
each simulation. The unique aspect here is the introduction of early
stop criteria, which are assessed not for individual simulations but
across the entire batch. Should a significant portion of simulations
within the batch meet these criteria early on, the whole batch can
be terminated beforehand. Results from the simulations completed
up to that point are then analyzed. This method proves efficient,
conserving both time and resources, especially when the criteria
are satisfied early in the batch run. It is important to note that the
end of an individual simulation is controlled by the parameters set
in the simulation file and is not directly associated with AsaPy.

Describing its intended usage, the control of executions is carried
out by the ExecutionController class, which is instantiated with
two functions and one number, as exemplified in Listing 1. The
first argument is a function that is responsible for effectively run-
ning the executions: receiving the collection of design points and
returning the corresponding results. Moreover, the second function
is the actual stop criteria, as already mentioned. Finally, the third
argument is the size of the chunks into which the batch will be split.
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Listing 1: Usage example of the Execution Control module

def simulate(doe: pandas.DataFrame) -> pandas.DataFrame:

return pandas.DataFrame.from_dict(asa_results)

def stop_check(result: pandas.DataFrame, last_result:
pandas.DataFrame) -> bool:
or
return compare_results(result, last_result)

ec = asapy.ExecutionController(simulate, stop_check, 100)
result = ec.run(doe)

Notice that this functional style allows the library client code to
define how the simulations should be executed and what criteria
should be used. This empowers analysts to use whichever simula-
tion machine they may desire, just requiring the implementation of
a function that interfaces with the chosen simulator and respects
the expected signature. This interoperability easiness was one of
the library design cardinal points and is now illustrated.

3.3 Analysis

The analysis step is supported by the analysis module and pro-
vides a range of tools for analyzing and exploring simulation data.
Therefore, in this section, we discuss some of the available compo-
nents and how the package automatically chooses an appropriate
technique for the analyst.

One of the main features of the library is hypothesis testing,
which determines whether a specific hypothesis about the data is
true or false [33]. This component offers a collection of statistical
tests from which to choose. Focusing on the needs of the typical
analyst, the module utilizes the decision flow depicted in Figure 2 to
automatically select an appropriate test for the data being analyzed.
For instance, AsaPy can streamline the process of conducting an
ANOVA (Analysis of Variance) test, not only by performing the test
itself but also by including all requisite pre-test checks and data
visualizations to aid in interpreting the results. Integrating a full
analytical pipeline — from preliminary data checks to post-analysis
interpretation tools — represents a methodological advancement.
This ensures that users are not only able to execute the desired
statistical tests but also do so with a comprehensive understanding
of the prerequisites and implications of these tests.

Another functionality is the distribution fit technique [44], used
to adjust a particular statistical distribution to the data. This com-
ponent gives information about the distribution that best fits the
input data among the most common ones [27], such as the normal,
uniform, exponential, chi-squared, and beta distributions. The pro-
cess of fitting distributions involves estimating their parameters,
allowing us to extrapolate data beyond the range of the observed
values.

This package also includes methods for determining feature
scores [31], which are used to rank the importance of different
attributes in the dataset. These techniques are particularly helpful
in filtering out non-informative or redundant variables from the
input data [34].

In addition, the package includes tools for Pareto front analy-
sis [21], used to identify the optimal trade-off between two conflict-
ing objectives. This is a useful tool for decision-making in complex
systems.
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Figure 2: Flow diagram for hypothesis testing using AsaPy.

Furthermore, the analysis package also provides methods for
detecting and removing outliers in the data [43], which can signif-
icantly affect the accuracy of the analysis. This is achieved using
various statistical techniques, such as the standard deviation and
interquartile range methods.

Finally, the package provides exploratory data analysis (EDA)
tools [49], which can be used to visualize and understand the data.
This toolkit consists of a table of class balance for categorical vari-
ables, association, correlation, histograms, and boxplots with infor-
mation on the number of outliers for numerical variables. These
preliminary analyses can help identify patterns, trends, and anom-
alies in the data and guide the choice of statistical models and
analysis methods.

3.4 Prediction

The prediction step, the last one, uses the models module and pro-
vides a comprehensive framework for building custom machine
learning models, including but not limited to neural networks and
random forests. This package covers the entire process of creating
a model, including phases such as data preprocessing, hyperparam-
eter tuning, cross-validation, evaluation, and prediction. The most
significant advantage of using this module is that it allows us to
obtain estimated results without performing new simulations, thus
saving time and computational resources.

The package is built on top of popular machine learning libraries,
such as TensorFlow [1] and Scikit-learn [40]. This allows for easy in-
tegration with other machine learning tools and workflows, aligned
with the cardinal points conceived during the package design.

The models module provides various preprocessing methods
to transform raw data into a format that can be used by machine
learning algorithms. These methods include scaling, normalization,
feature engineering, and more. It also provides options for handling
missing values and categorical features, along with a wide range
of available models. To help users effectively utilize these features,
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we provide some tutorials in our repository to guide the process of
creating and evaluating models using the models package.

Hyperparameters are parameters that are not learned during
the training process but are set before the training begins. These
hyperparameters can have a significant impact on the performance
of the model. The models package includes methods for hyperpa-
rameter tuning, such as random search [5], which optimizes model
performance by establishing the most effective hyperparameters
before the training process.

Cross-validation is a technique used to evaluate the performance
of a model. The models package includes various methods for per-
forming cross-validation, including k-fold cross-validation [4].

The models package provides various evaluation metrics to mea-
sure the performance of a model to solve regression or classification
problems. These metrics include accuracy, precision, recall, F1 score,
mean squared error, and more. The package also provides options
for visualizing the model’s performance using plots.

3.5 Support module

The AsaPy library provides users with a primary support module,
namely utils. This module supply additional tools and utilities to
users for handling data.

The utils module is a helpful tool for performing mathematical
calculations and conversions in various fields, including geodesy,
physics, and engineering. This component contains an assortment
of constants, methods, and functions for converting distance and
angle measurement units and changing coordinate systems. One
of the key features of the utils module is its ability to convert
between different units of distance and angle measurement, such as
meters, kilometers, feet, miles, radians, and degrees. The package
includes methods for executing these conversions with ease, making
it simple to switch between units as necessary.

Another essential aspect of the utils module is its support for
various coordinate systems. This module provides methods for con-
verting between different coordinate systems, such as geodetic,
geocentric, and Cartesian coordinate systems. This can be espe-
cially useful for applications in geodesy and geolocation, where
precise positioning is critical. For example, the Geod class in the
utils module provides methods for converting between geodetic
and Cartesian coordinates and calculating distances and bearings
between points on the Earth’s surface. The ECEF (Earth-centered,
Earth-fixed) class, on the other hand, offers methods for convert-
ing between ECEF and geodetic coordinates and calculating the
distance between points in ECEF space. In summary, the utils
module provides users with essential tools and utilities for han-
dling data, performing mathematical calculations and conversions,
and changing coordinate systems.

4 CASE STUDY: BEYOND VISUAL RANGE AIR
COMBAT SIMULATIONS

In this section, we demonstrate how AsaPy can be effectively used to
analyze military operational scenarios, especially in the context of
beyond visual range (BVR) air combat simulations. BVR air combat
is a challenging and critical field in which engagements occur be-
yond the pilot’s visual range [11]. These engagements make use of
advanced weaponry and sensor systems. AsaPy has been employed
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in various applications to enhance BVR air combat simulations
that feature agents controlled by artificial intelligence models [19],
demonstrating its capabilities and versatility. This section will dis-
cuss three primary applications of AsaPy, as implemented in other
works using ASA and other simulation software.

Toward the end of the section, we introduce a new example
analysis featuring a BVR fighter aircraft navigation scenario using
ASA. This scenario serves as a practical illustration of AsaPy’s
applicability in a specific aerospace context, further emphasizing
its role as a versatile tool within the aerospace domain.

4.1 Engagement Decision Support

The study conducted by Dantas et al. [12] aimed to develop an en-
gagement decision support tool for BVR air combat in the context
of Defensive Counter Air (DCA) missions. In BVR air combat, en-
gagement decision refers to the moment when the pilot decides to
engage a target by executing corresponding offensive maneuvers.

To plan the execution of simulations, the authors used the doe
module from AsaPy, selecting key variables, including categorical
and numerical with different coverage ranges, to simulate a BVR
air combat. The simulation data was pre-processed and explored
using the analysis module to organize and better understand
the data. These variables included the distance, angle between the
longitudinal axis, and difference in altitude between the reference
and the target. The authors ran 3,729 constructive simulations that
lasted 12 minutes each, resulting in 10,316 engagements.

The authors evaluated the simulations using an operational met-
ric called the DCA index, which represents the degree of success in
this type of mission based on the expertise of subject matter experts.
The DCA index is based on the distances between aircraft from
both the same team and opposing teams, as well as the number of
missiles deployed. The index indicates the likelihood of success in
BVR air combat during DCA missions. The primary aim of these
missions is to establish a Combat Air Patrol, which requires aircraft
to fly in a specific pattern around a designated location.

The authors employed the models module from AsaPy to build a
supervised machine learning model based on decision trees to deter-
mine the quality of a new engagement, using the engagement status
right before it starts and the average of the DCA index throughout
the engagement. Beyond model creation, the authors seamlessly in-
tegrated AsaPy for data preprocessing and hyperparameter tuning
as well. Overall, the authors utilized various features of the AsaPy
library to plan, execute, and analyze their simulations and to build
and evaluate a model for engagement decision support in BVR air
combat.

4.2 Weapon Engagement Zone Evaluation

Still in the BVR air combat context, Dantas et al. [13] used As-
aPy to analyze simulation data generated by the ASA simulation
environment, explicitly focusing on calculating an air-to-air mis-
sile’s weapon engagement zone (WEZ). The WEZ allows the pilot
to identify airspace where the available missile is more likely to
successfully engage a particular target, i.e., a hypothetical area
surrounding an aircraft where an adversary is vulnerable to a shot.

Designing experiments for missile launches in BVR air combat is
a complex process that involves considering various input variables.
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These variables help to simulate different scenarios and identify the
best possible outcomes for missile launches. The seven input vari-
ables for the simulation runs include the shooter altitude, shooter
speed, target altitude, target speed, target heading, the relative
position of the target, and shooter pitch.

Each variable plays a crucial role in determining the WEZ maxi-
mum range. The authors used the doe module to perform the LHS
method from AsaPy to plan and design the simulation experiments
using these variables.

The simulations were executed in chunks to improve the compu-
tational efficiency and reduce the simulation time. After completing
the simulation runs, the authors collected the output data and an-
alyzed it using the analysis package in AsaPy, generating data
visualization, feature engineering, and statistical tests to under-
stand the data distribution and identify relationships between the
input variables and the WEZ.

Using the data from the simulations and analysis, the authors
built a supervised machine learning model using a Deep Neural
Network (DNN) to predict the WEZ maximum launch range for a
given scenario.

Finally, the authors used the models package in AsaPy to build
and train the model to predict the WEZ maximum launch range
for a given scenario. They evaluated its performance using metrics
such as the mean absolute error and the coefficient of determination
to ensure that the model accurately predicted the WEZ for different
scenarios.

In a related study presented by Dantas et al. [17], the emphasis
was on the WEZ of Surface-to-Air Missiles (SAMs). SAMs hold a
crucial position in the landscape of modern air defense systems. The
WEZ’s significance is further accentuated as it is directly associated
with a missile’s maximum range, marking the farthest interception
distance between a missile and its target.

Conventional simulation methods, in many instances, result
in significant computational demands and extended processing
times. To address these challenges, the study incorporated machine
learning techniques, using AsaPy prediction methods synergized
with specialized simulation tools to train supervised algorithms.
Through AsaPy, researchers were able to streamline the simulation
and analysis process, making it more efficient and data-driven.

By utilizing a comprehensive dataset from earlier SAM simula-
tions, the model demonstrated remarkable accuracy in predicting
the SAM WEZ based on new input parameters. This combination
of machine learning and advanced simulation tools not only accel-
erated SAM WEZ simulations but also bolstered strategic planning
in air defense, offering invaluable real-time insights that enhance
the performance of SAM systems. The study, through AsaPy, pro-
vided an in-depth analysis of different machine learning algorithms,
elucidating their capabilities and performance metrics. It not only
suggested avenues for future research but underscored the trans-
formative potential of incorporating machine learning into SAM
WEZ simulations.

4.3 Missile Hit-Prediction

In Dantas et al. [18], the authors analyzed both defensive and of-
fensive scenarios in BVR air combat using AsaPy. The authors
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used AsaPy to generate constructive simulations of BVR air com-
bat scenarios and extract various features related to situational
awareness from the simulation data. They designed a multilayer
perceptron neural network incorporating data from these simu-
lations to enhance pilots’ situational awareness during in-flight
decision-making. By training their machine learning models based
on neural networks on this data, they could accurately predict a
pilot’s situational awareness based on the missile’s ability to hit the
target. Therefore, Dantas et al. [18] demonstrated the potential of
machine learning in BVR air combat scenarios by generating fast
and reliable responses concerning the tactical state to improve the
pilot’s situational awareness and, therefore, the in-flight decision-
making process.

One of the key strengths of AsaPy is its ability to work with var-
ious simulation software, including commercial and open-source
platforms (Figure 3). This versatility allows users to leverage the
power of AsaPy regardless of the simulation software they are using,
making it a valuable tool for military operational scenario analysis.
For example, in Dantas et al. [15], the authors aim to develop a ma-
chine learning model that can predict the effectiveness of missile
launches in BVR air combat scenarios. To generate the simulation
data, the authors used the FLAMES simulation platform, a com-
mercially available simulation software suite. The AsaPy library
was used to organize and analyze the simulation data generated
by FLAMES. The authors used AsaPy to build seven different su-
pervised machine learning models that predict the effectiveness
of missile launches in BVR air combat scenarios. To improve the
performance of the machine learning models, the authors also used
resampling techniques such as SMOTE [7] to generate more data on
missile launches. This approach helped to address the class imbal-
ance issue that commonly occurs in military operational scenarios,
where successful missile launches are relatively rare compared to
unsuccessful ones.

Overall, the successful implementation of AsaPy in those mis-
sile hit-prediction works demonstrates its versatility and utility in
analyzing and modeling military operational scenarios. The AsaPy
library proved a valuable asset in the data analysis and modeling
process for the aforementioned works, providing efficient data pre-
processing and analysis tools and aiding in developing models to
solve complex problems in the BVR air combat context. AsaPy’s
compatibility with various simulation software highlights its versa-
tility, making it an excellent choice for researchers and practitioners
in the military and defense sectors who frequently work with mul-
tiple simulation platforms.

4.4 Fighter Aircraft Navigation

In this subsection, we explore the complexities of fighter aircraft
navigation, examining the interconnections between various flight
parameters and their impact on fuel efficiency. This analysis, sup-
ported by detailed experimental data, aims to deepen our under-
standing of efficient aircraft operation.

The scenario under examination involves a navigation flight
executed by a fighter aircraft, characterized by diverse maneuvers
at various altitudes and speeds. The aircraft navigates between
10,000 and 35,000 feet, adjusting its speed from 350 to 550 knots.
Additionally, the flight includes a 10-minute holding maneuver at
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Figure 3: Examples of simulation platforms in which AsaPy may be employed: FLAMES (left) and ASA (right).

the third route point, where the aircraft follows a circular path in
the air. This maneuver is typically used for traffic management or
to delay the aircraft before landing.

This specific case study comprises two experiments aimed at
elucidating the methodology of extracting and analyzing data from
simulations to address pertinent questions in aerospace studies. For
an in-depth understanding of this process, we invite you to examine
the code associated with our analysis.

4.4.1 Experiment 1 — Analysis of the Relationship between Time of
Flight and Fuel Consumption: The first experiment investigates the
link between time of flight, denoted as time_of_flight, and fuel
consumption, referred to as fuel_consumed, in a flight simulation
scenario. The main goal is determining if longer flight durations
directly relate to increased fuel consumption. This involves ana-
lyzing data from 4,000 flight simulations, focusing on total flight
duration in seconds and the amount of fuel consumed in pounds.
To accomplish this, various statistical methods, including linear
regression and correlation analysis, are used. Furthermore, data
visualization techniques, especially scatter plots, are utilized to
interpret the relationship between these key variables (Figure 4).
The central theory suggests a direct, positive correlation between
time of flight and fuel consumption, indicating that longer flights
generally result in higher fuel usage. However, unexpectedly, the re-
sults show no clear linear relationship between these variables. This
surprising finding is mainly due to variations in speed and altitude
during the simulations, indicating that these factors significantly
affect fuel consumption dynamics. This complexity, going beyond
simple linear correlations, highlights the need for more research
into how speed and altitude change influence fuel consumption.

4.4.2  Experiment 2 - Analysis of the Relationship between Speed, Al-
titude, and Fuel Consumption: Expanding on the initial experiment’s
results, the second experiment clarifies the relationship between
flight speed, altitude, and fuel consumption in a simulation context.
The goal is to understand how these factors, both individually and
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Figure 4: Linear regression of Time of Flight vs. Fuel Con-
sumed.

together, impact an aircraft’s fuel efficiency. This investigation in-
volves analyzing extensive flight simulation data, focusing on the
interplay between speed in knots, altitude in feet, and fuel consump-
tion measured in pounds. The study reveals complex relationships
and patterns using statistical analyses, two-dimensional charts, and
surface plots (Figure 5).

The primary hypothesis of the experiment suggests that both
speed and altitude significantly affect fuel consumption in a po-
tentially complex and interactive manner. The research aims to
determine if higher speeds or altitudes proportionally increase fuel
consumption and to identify optimal efficiency points.

One of the key findings of the experiment is the discovery of fuel
consumption peaks. These peaks are most prominent in higher and
red regions of the chart, occurring at an altitude of approximately
10,000 feet and a speed of about 525 knots. At these parameters,
the consumption reaches nearly 1800 pounds. This insight helps
to understand the conditions under which fuel consumption is
maximized, informing operational and design decisions for aircraft.
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Figure 5: Comparative analysis of aircraft performance parameters. (a) presents a 2D perspective, while (b) offers a 3D
visualization, providing a comprehensive overview of fuel efficiency dynamics.

In contrast, the study also identifies areas of operational effi-
ciency. These are indicated by blue areas on the chart, representing
lower fuel consumption and suggesting more efficient operating
ranges. The lowest consumption values, close to 1000 pounds, are
observed at altitudes of around 25,000 to 30,000 feet and speeds
between 400 to 450 knots. This finding is significant for optimizing
flight paths and aircraft design for energy efficiency.

Additionally, the experiment reveals a complex variation in fuel
consumption at certain intermediate speeds and altitudes. This
observation indicates an operational efficiency point that does not
follow a simple linear relationship with speed or altitude, adding a
layer of complexity to the understanding of aircraft fuel efficiency.

Moreover, the insights gained from the chart are invaluable for
planning routes that prioritize fuel efficiency. By avoiding altitude
and speed ranges that result in excessive consumption, significant
improvements in operational cost can be achieved.

Finally, the experiment’s results reveal insights into aircraft per-
formance. The data illustrate how the engine and aircraft perform
under various operational conditions, aiding engineers in optimiz-
ing or developing more efficient propulsion systems. These findings
are important for advancing the field of aeronautical engineering
and contribute to the development of more efficient aircraft.

5 CONCLUSION AND FUTURE WORK

In conclusion, AsaPy distinguishes itself as a versatile Python li-
brary that streamlines and accelerates the analysis of simulation
data. Its features, including experiment design, statistical analysis,
machine learning algorithms, and data visualization tools, make this
library a good resource for engineers and researchers in simulation
studies, particularly in the aerospace and military domains.
Future work on AsaPy is multifaceted, aiming at both enhance-

ment and expansion. We plan to integrate additional DoE methods
and machine learning algorithms to broaden its applicability. An-

other priority is optimizing the performance of AsaPy’s algorithms,

to enable faster processing and the handling of larger datasets.
Enhancing interoperability through integration with other tools
and platforms is also on our agenda, further improving usability.
Continual refinement of the documentation and user interface will
make AsaPy more user-friendly and accessible.

A key focus of our future work is the practical demonstration of
AsaPy’s effectiveness in real-world scenarios. We propose a com-
prehensive analysis of AsaPy’s impact on data analysis efficiency.
This would involve contrasting the processes of managing simula-
tion output data from different systems, such as FLAMES or ASA,
with and without AsaPy. The emphasis will be on assessing how
AsaPy streamlines tasks like data reading, loading, cleaning, and
preliminary analyses.

Additionally, we are planning to expand our suite of data analy-
sis tools, particularly focusing on expanding supervised learning
algorithms and introducing unsupervised learning methods, such
as clustering and principal component analysis (PCA). This ex-
pansion aims to enhance AsaPy’s ability to uncover patterns and
relationships in data without the need for pre-labeled outcomes.
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SOURCE CODE

AsaPy is available as an open-source library. You can download it
from https://github.com/ASA-Simulation/asapy.
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