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Abstract. The Aerospace Simulation Environment (Ambiente de Sim-
ulação Aeroespacial – ASA in Portuguese) is a custom-made object-
oriented simulation framework developed mainly in C++ that enables 
the modeling and simulation of military operational scenarios to support 
the development of tactics and procedures in the aerospace context for 
the Brazilian Air Force. This work describes the ASA framework and its 
main features: a distributed architecture for coordinating multiple sim-
ulation machines, a modular structure that allows models to be loaded 
at runtime, a batch execution mode for simulating multiple scenarios 
with varied initial conditions, and an integrated data analysis platform 
for post-processing simulation results. In addition, we present a list of 
recent studies that have used ASA in applications related to decision 
support and autonomy in air combat scenarios. 

Keywords: simulation environment · distributed simulation · data
analysis · military · operational scenarios 

1 Introduction 

The Institute for Advanced Studies (IEAv), a research organization of the 
Brazilian Air Force (Força Aérea Brasileira  — FAB, in Portuguese), has 
developed, since 2018, the Aerospace Simulation Environment (Ambiente de 
Simulação Aeroespacial  — ASA, in Portuguese) to provide a computational 
solution that enables the modeling and simulation of operational scenarios. 
This solution allows users to define strategies, parameters, and command 
decisions to support the development of tactics, techniques, and procedures in 
the aerospace domain for defense purposes. 
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The characteristics of modern battlefield scenarios present significant chal-
lenges to the development of practical combat simulations [ 2]. These challenges 
call for more integrated and flexible solutions that can address both technical 
and organizational aspects [ 19]. 

To meet some of these demands, frameworks such as the Advanced Frame-
work for Simulation, Integration, and Modeling (AFSIM) [ 1], Wukong [ 18], 
FLAMES [ 29], and VR-Forces [ 25] have been developed. However, many of 
these tools are commercial products or restricted to use within specific coun-
tries. In this context, the ASA environment was conceived as a national solution 
designed to support FAB’s strategic planning, meet operational analysis needs, 
and promote the development and evaluation of emerging technologies for mili-
tary research. 

ASA is designed as a flexible and modular platform, capable of adapting to 
diverse user needs. This flexibility is essential given the wide range of require-
ments from its users. These needs could not be fully addressed by commercial 
off-the-shelf (COTS) simulation software. Rather than building an entirely new 
system, the development approach integrated openly available tools into a uni-
fied simulation environment that is flexible, accessible, and scalable. 

The proposed solution uses the Mixed Reality Simulation Platform 
(MIXR) [ 20] as its simulation engine, an open-source software project designed 
to support the development of robust, scalable, virtual, constructive, stand-
alone, and distributed simulation applications. ASA extends MIXR’s capabilities 
by adding components that streamline tasks for both developers and analysts. 
A manager application was created to serve as an interface between multiple 
resources, working as a hub to execute, store, and analyze simulations across 
multiple machines. This application also supports the simultaneous creation of 
numerous simulations by varying initial conditions according to the analyst’s 
needs. Furthermore, models and tools can be dynamically loaded at runtime 
to increase flexibility. All simulation data are stored in a dedicated database, 
expediting data collection and enabling more robust statistical analysis. Addi-
tionally, given the complexity of simulation outcomes and the varied technical 
background of ASA users, a dedicated data analysis platform was integrated into 
the system, not only for planning and visualization but also for post-processing 
the scenario data. 

The main contribution of this work is the introduction of a new environ-
ment for modeling and simulation in the aerospace domain for military applica-
tions. It features: (i) a distributed architecture for managing multiple simulation 
machines; (ii) support for runtime model loading within a modular architecture, 
allowing new models to be easily integrated; (iii) a batch execution mode that 
enables the simulation of multiple scenarios with varied initial conditions; and 
(iv) an enhanced data analysis platform for post-processing military operational
scenario data. Additionally, we present a list of recent studies that have used
the ASA platform in applications related to decision support and autonomy in
military operational scenarios.
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The remainder of this paper is organized as follows. Section 2 presents the 
ASA architecture. Section 3 discusses studies that have used ASA in air combat 
analysis as application examples of the simulation framework. Finally, Sect. 4 
provides concluding remarks on the current state of ASA and outlines potential 
directions for future work. 

2 ASA Architecture 

The ASA design consists of three main modules. The first part is the simulation 
framework, defined as AsaSimulation, which provides the applications and nec-
essary services to create and execute simulations. The second part comprises the 
interface applications, denominated AsaInterfaces, which provide tools for creat-
ing scenarios by listing all available components to be included and a library for 
interacting with the AsaSimulation module. Lastly, the third part is the analysis 
module, called AsaDataScience, which allows for post-processing and analysis of 
scenario executions. 

Figure 1 displays a summary of the ASA architecture, and the following sub-
sections provide details on all three primary ASA modules. All ASA applications 
use network communications, allowing processing to be distributed across mul-
tiple servers on a network. 
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Fig. 1. ASA: modules and software applications. 

2.1 AsaSimulation 

The AsaSimulation module provides the necessary components for developing 
and executing a scenario simulation. It consists of applications, services, and 
libraries that help create agent models by developers and in the elaboration and 
simulation of scenarios by analysts. 

The main features of this module are management and execution of simu-
lations, dynamic loading of extension models, distribution of simulation execu-
tions, and management of simulation batch processing.
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A permanent storage service called AsaDatabase keeps agent metadata, sim-
ulation scenarios, execution data, and analysis results. This service meets the 
storage demands of the AsaSimulation and AsaDataScience modules. 

New agent models can be added to ASA by extending the interfaces 
and classes available in a library called AsaExtension. A new agent model 
that will be loaded into the AsaSimulation framework must provide its com-
piled source code (shared object file) and a JavaScript Object Notation 
(JSON) file that describes the parameters and components accepted by the 
model. AsaExtension also provides functionalities that allow extensions to 
store agent data in the AsaDatabase. This is done through the C++ macro 
RECORD_ASA_CUSTOM_DATA("tag", agent), which receives as its first parame-
ter a tag that identifies the agent’s type and the agent object with the attributes 
to be stored in the AsaDatabase. Storing the state of the agents at each sim-
ulation step is optional, but it is essential if there is an interest in performing 
post-processing of the simulation data. 

The AsaSimulation framework enables analysts to specify agent parameters 
(placeholders) during the simulation execution request, facilitating the execu-
tion of batch simulations. Analysts can request a batch execution from these 
simulation scenario templates by providing a list of initial conditions for the 
previously selected agent parameters. Each set of initial conditions, combined 
with the scenario template, generates an execution request that is allocated to 
run on a distributed processing node. 

The distribution of simulation processing is done by dividing the responsibil-
ities of simulating to three applications on a network: AsaManager, AsaHandler, 
and AsaNode. The following subsections detail each of these applications. 

AsaManager is responsible for coordinating the processes to use ASA in a dis-
tributed manner. One of the essential functions of AsaManager is receiving and 
preprocessing execution requests, and automatically and transparently dispatch-
ing the requested simulation to be executed on an available node. The distribu-
tion of executions is performed using a queue service based on the Advanced 
Message Queuing Protocol (AMQP). AsaManager places a validated simulation 
execution request in the queue (Executions Queue) and, when available, an Asa-
Handler starts serving the request. 

The use of queues to decouple direct management between request handling 
and execution enables the dynamic addition of new processing nodes, such as 
AsaHandler/AsaNode, to the system in response to increased demand for paral-
lel execution. Because communication between AsaManager, ExecutionsQueue, 
and AsaHandler occurs over a network, applications can be distributed across 
different machines within a networked environment. 

AsaManager incorporates a Representational State Transfer API (REST 
API) to enable interaction between other modules and the simulation function-
alities, as well as access to stored data. This API implements the ASA protocol, 
which exposes AsaSimulation as a simulation service to other applications. It 
enables the submission, validation, execution, pausing, resumption, cancellation,
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and monitoring of single- or batch-simulation tasks. Additionally, this protocol 
defines methods for accessing data from completed simulations and managing 
user data. 

Access is restricted to authenticated and authorized users who are permit-
ted to use the system’s functionalities. For each simulation execution request, 
AsaManager verifies the validity of the scenario to be simulated and checks 
whether the authenticated user is authorized to use the listed components and 
has sufficient credit available. Within the ASA framework, these credits are 
referred to as AsaCoins, which serve as a means to account for user resource 
consumption. During each simulation execution, both the CPU time consumed 
and the disk space used to store the simulated agent data were measured. These 
two variables are then converted into an equivalent value in AsaCoins, which 
is subsequently debited from the user’s account. The reference rate for a sin-
gle AsaCoin unit was established using the execution of a standard benchmark 
scenario. Based on this reference, the CPU time conversion rate is 0.0137650 
AsaCoin per second, and the storage conversion rate is 0.0141355 AsaCoin per 
kilobyte. 

AsaHandler is responsible for monitoring the execution queue, converting 
requests, and supervising simulation execution. When an AsaHandler is avail-
able and a new execution request is placed in the queue by AsaManager, the 
AsaHandler retrieves the request, converts it into a format compatible with the 
AsaNode, initiates a new AsaNode process, and monitors its execution. Commu-
nication between AsaHandler and AsaNode is carried out via interprocess com-
munication, enabling AsaHandler to oversee the simulation run. If the AsaNode 
terminates unexpectedly or a failure is detected by the AsaHandler, it will ter-
minate the execution and will keep the AsaManager informed of the simulation 
status. 

AsaNode is the simulation engine of the ASA platform, and its primary func-
tion is to process the simulation itself. It is an executable file obtained from the 
compilation of codes developed in MIXR and features developed by the ASA 
team, such as dynamically loading extensions and controlling the simulation’s 
execution (pause, resume, stop, execution speed, etc.). It estimates how the sce-
nario will evolve, considering the models incorporated in each agent present 
in the simulation. AsaNode can run on the same machine as the AsaManager 
application or in a clustered computing environment. This capability is essential 
when the user wants to simulate a set of scenarios, called batch, and the main 
difference between them is the initial configuration of each agent. 

At predefined time intervals, AsaNode reports the progress of the simulation 
to AsaHandler, allowing this application, or AsaManager, to manage the execu-
tion process. If enabled by the execution requester, AsaNode can transmit data 
over the network using either the Distributed Interactive Simulation (DIS) proto-
col or the High-Level Architecture (HLA) standard, both of which are supported 
by the MIXR framework. DIS is a protocol designed for real-time exchange of
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information between simulation entities in a distributed environment, while HLA 
is a general architecture that enables interoperability among different simulation 
systems through a shared runtime infrastructure [ 21]. To allow simulation data 
to be streamed for visualization in the Tacview flight analysis tool 1, the AsaEx-
tensions library implements the ACMI file format and its associated Real-time 
Telemetry Protocol [ 28]. 

2.2 AsaInterfaces 

The AsaInterface module includes two tools: WebStation and AsaClient. Web-
Station provides a visual interface for building simulation scenarios, while 
AsaClient manages requests to the simulation manager and handles user authen-
tication. 

WebStation provides a graphical user interface (GUI) accessible to registered 
users through a web page developed with VueJS and Django. Analysts use the 
platform to construct simulation scenarios that include military symbols, geo-
metric drawings, aeronautical charts, and digital terrain models. The interface 
displays how each scenario progresses during the simulation, offering an interac-
tive environment for analysis and planning. Users can define performance met-
rics and examine the results after the simulation is completed. The platform also 
allows users to specify which messages should be stored in the database during 
execution. Furthermore, WebStation includes a validation feature that checks 
whether scenario components meet the model’s requirements and ensures that 
all attributes and subcomponents are properly defined. 

To support batch execution, WebStation allows users to configure input 
parameters that vary across multiple runs. After completing the scenario setup, 
users can download a JSON file containing the scenario data or save it to the 
database for future access. The interface also supports uploading JSON files, 
enabling users to edit and reuse existing scenarios. 

An overview of the WebStation interface, including scenario construction and 
visualization features, is shown in Fig. 2. 

AsaClient is a Python library designed to operate with the ASA protocol. 
It performs two primary functions: managing user authentication and handling 
communication with the simulation manager. AsaClient serves as an essential 
interface between the AsaDataScience environment and the Manager, enabling 
secure and structured access to simulation resources. 

The library provides a set of high-level methods that allow analysts to interact 
with the core components of the simulation infrastructure. Through AsaClient, 
users can authenticate in the system, submit execution requests, and moni-
tor simulation progress. AsaClient also supports database access for retrieving 
results, storing output, and managing simulation metadata.

1 https://www.tacview.net. 
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Fig. 2. WebStation: interface to create and visualize simulations. 

2.3 AsaDataScience 

The AsaDataScience module provides tools for understanding the factors that 
led to the simulation results, supporting analysts in identifying how performance, 
cost, and operational constraints evolve across military scenarios. It is composed 
of two main components: (i) the AsaPy Python library, designed to assist in the 
post-processing of simulation data; and (ii) a cloud-based computational envi-
ronment with access to high-performance hardware and a JupyterHub interface 
for large-scale batch execution and interactive data analysis. 

At the core of this module is AsaPy, a specialized Python library that pro-
vides a structured pipeline for simulation data analysis [ 15]. It integrates well-
established methods for experiment planning, batch execution control, statisti-
cal analysis, and machine learning, enabling users to derive actionable insights 
with minimal programming effort. Its internal structure follows a typical analyst 
workflow and is composed of four main functional blocks, described in Table 1. 

Running a simulation invariably results in the collection of massive data at 
every step. Once these data are adequately stored and structured in the Asa-
Database, analysts can employ techniques such as data visualization, statisti-
cal testing, and model fitting to uncover insights from the simulations. AsaPy 
streamlines this process by automating routine steps and standardizing the ana-
lytical workflow. 

A particularly important feature of AsaPy is its support for batch execution. 
In many military simulations, it is necessary to run hundreds or thousands of 
scenarios with varying input parameters [ 17]. AsaPy allows these executions to be 
divided into chunks, monitors the results of each chunk, and applies convergence-
based early stopping criteria to avoid unnecessary runs. This improves both 
analytical efficiency and resource usage. Figure 3 illustrates this batch execution 
workflow.
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Table 1. AsaPy functionalities and corresponding descriptions. 

Functionality Description 
Design of Experiments Generates input configurations to explore the simulation 

parameter space efficiently. 
Execution Control Manages simulation batches with chunking and early 

stopping based on convergence of key metrics. 
Analysis Offers tools for statistical analysis, data exploration, and 

visualization. 
Prediction Applies supervised and unsupervised machine learning 

models for regression and classification tasks. 

Scenario Batch 

ExecutionExecutionExecution 

Generates 
MetricsMetricsMetrics Batch Metrics 

Messages 
PLAYER_DATA 

NEW_TRACK 

TRACK_DATA 

v x y

1 3 0

2 9 -1

Aliases Executes 

Fig. 3. Batch execution flow supported by AsaPy. The process begins with the selec-
tion of aliases, which define the input parameters to be varied across simulations, and 
messages, which specify the simulation outputs to be collected. The scenario batch 
is then divided into sequential chunks. Each chunk is executed, and the selected out-
puts are used to compute batch-level metrics, which can support monitoring and early 
stopping of the execution process. 

To support large-scale simulations, AsaDataScience includes a cloud-based 
computational environment equipped with high-performance hardware and a 
JupyterHub interface 2. This setup enables analysts to manage simulation studies 
interactively through notebooks, providing both scripting flexibility and real-
time visualization. JupyterHub also facilitates collaborative work by allowing 
multiple users to run batch executions, monitor progress, and analyze results in 
a shared and scalable environment, all without requiring direct access to low-level 
computing resources. 

Overall, AsaDataScience serves as a unified environment for analyzing simu-
lation data in defense applications, regardless of the simulation engine employed. 
In addition to supporting ASA-native data formats, it is also compatible with 
outputs from other frameworks, as demonstrated in [ 8]. 

3 Applications in Decision Support and Autonomy 

ASA has been a flexible and useful platform for research in air combat operations, 
especially in areas related to decision support and autonomous systems. The 
studies listed below, in chronological order, demonstrate how ASA has been 
gradually adopted in increasingly complex and realistic scenarios.
2 https://jupyter.org/hub. 
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The earliest study, [ 4], presented an artificial neural network model to support 
pilot situational awareness in Beyond Visual Range (BVR) air combat. Using 
simulation data, the system generated offensive and defensive assessments to aid 
decision-making during flight. This work was developed using the AEROGRAF 
Platform [ 27], which preceded ASA and influenced its initial design. 

ASA was later used in [ 22] to explore the feasibility of agent-based modeling 
and simulation for assessing air defense capabilities in BVR engagements. This 
marked the first application of ASA in a strategic planning context. 

In [ 7], over 50,000 missile launches were simulated to train a deep neural net-
work for estimating the maximum launch range of a missile’s Weapon Engage-
ment Zone (WEZ), achieving high predictive accuracy while reducing the need 
for further simulations. This study used the same missile model implemented in 
ASA. 

In [ 6], 3,729 BVR engagements were simulated to train a supervised learning 
model aimed at supporting the decision of when to engage enemy aircraft during 
Defensive Counter Air (DCA) missions. The model was trained using simulation-
derived operational metrics to capture relevant combat dynamics. 

In [ 11], ASA/AEROGRAF was used to simulate 10,000 BVR combat sce-
narios, enabling the development of classifiers that improved pilot situational 
awareness. The models achieved high accuracy in distinguishing between offen-
sive and defensive conditions. 

The work in [ 3] focused on aircraft formation control using artificial potential 
fields and optimization techniques. ASA simulations helped identify configura-
tions that improved formation coherence and mission success. 

The study [ 24] employed ASA to optimize tactical unmanned aerial vehicle 
(UAV) formations under uncertainty in war-game scenarios. Metaheuristics were 
applied to maximize the probability of success against opposing forces. 

In [ 12], ASA was used to propose an architecture for training a deep rein-
forcement learning agent capable of autonomously learning BVR tactics. 

The work in [ 10] proposed an approach for analyzing surface-to-air missile 
engagement zones using prediction models to enable real-time estimation while 
reducing computational costs. The analysis was based on the same surface-to-air 
missile model implemented in ASA. 

The work in [  13] proposed new social navigation metrics to assess collabora-
tion between human pilots and autonomous wingmen in air combat scenarios. 
It also outlined a validation experiment using ASA to simulate mixed human-
autonomous formations. 

In [ 30], a defensive “winding maneuver” was proposed to improve aircraft 
survivability against surface-to-air missiles. Developed using ASA, the maneu-
ver was optimized with a genetic algorithm and validated through simulations, 
statistical analysis, and operational metrics. 

The work in [  23] proposed machine learning models to approximate ASA sim-
ulation outcomes in stochastic contexts, significantly reducing overall simulation 
time.
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The study in [ 16] introduced a probabilistic kill estimation model for air-to-air 
missiles based on ASA simulations and stochastic target modeling. It employed 
the same missile structure used in ASA. 

Finally, [ 5, 14] used pilot data from ASA/AEROGRAF to train imitation 
learning models for replicating pop-up attack maneuvers. A variational autoen-
coder was employed to generate synthetic samples and augment the dataset, 
improving the robustness and performance of the models. 

These studies collectively demonstrate the flexibility and effectiveness of ASA 
as a simulation tool for operational analysis, autonomy development, and tactical 
decision support in air combat environments. 

4 Conclusion and Future Work 

In this work, we presented a high-level overview of the ASA simulation frame-
work, developed by IEAv since 2018, with the primary objective of supporting 
the evaluation of military operational scenarios relevant to FAB. The platform 
offers several distinguishing features, including the management of multiple sim-
ulation machines across one or more computers, as well as the dynamic loading 
.so files at runtime, batch execution of simulations, and the AsaDataScience 
module, an integrated data analysis platform tailored for military operational 
studies. Furthermore, we highlighted recent works that have employed ASA as 
a simulation tool to support air combat applications. 

For future work, we plan to release part of the ASA source code, including its 
general architecture, to a selected group of organizations. This controlled release 
aims to encourage the development of diverse applications within the same sim-
ulation platform while ensuring proper control and security. Additionally, ASA 
is expected to evolve into a Simulation-as-a-Service (SimaaS) tool, supporting a 
wide range of simulation demands in the defense and aerospace domains [ 9]. This 
initiative aims to promote greater interoperability among government, academia, 
and industry. 

From a technical perspective, several enhancements are under consideration. 
First, we aim to enhance scalability through parallel processing by enabling 
the flexible addition of simulation nodes as computational demands increase. 
Another area of focus is observability: ASA will incorporate mechanisms to 
monitor resource usage (such as CPU, memory, and disk), track feature utiliza-
tion (identifying which components and libraries are used most frequently), and 
detect failures. These capabilities will enable better instrumentation, increased 
failure tolerance, and enhanced platform operational visibility. 

We also aim to introduce accountability mechanisms to estimate and con-
trol the computational cost of each simulation, allowing resource usage to be 
better quantified and managed. Regarding the core simulation engine, currently 
based on an object-oriented paradigm with deep inheritance hierarchies, we are 
exploring a transition to a more modular and maintainable design. One promis-
ing alternative is the adoption of the entity-component-system (ECS) paradigm, 
which can improve model readability and simplify the integration of new com-
ponents [ 26].
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Additionally, improvements are planned for the internal structure of the 
AsaPy library, with efforts to reorganize its modules for better maintainabil-
ity and extensibility. Finally, we expect to adapt the framework to support more 
modular and flexible decision-making processes in autonomous agent models 
by developing an artificial intelligence server in Python that integrates a rich 
ecosystem of specialized tools and libraries. 
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