
Received 22 February 2025, accepted 29 April 2025, date of publication 5 May 2025, date of current version 15 May 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3567186

Autonomous Aircraft Tactical Pop-Up Attack
Using Imitation and Generative Learning
JOAO P. A. DANTAS 1,2, MARCOS R. O. A. MAXIMO 1, AND TAKASHI YONEYAMA 1
1Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 12288-900, Brazil
2Instituto de Estudos Avançados, São José dos Campos, São Paulo 12228-001, Brazil

Corresponding author: Joao P. A. Dantas (jpdantas@ita.br)

This work was supported by the Article Processing Charge funded by the Coordination for the Improvement of Higher Education
Personnel (CAPES)—Brazil under Grant 00x0ma614. The works of Takashi Yoneyama and Marcos R. O. A. Maximo were supported
in part by the National Research Council of Brazil (CNPq) through grants 304134/2-18-0 and 307525/2022-8, respectively.

ABSTRACT This study presents a methodology for developing models that replicate the complex
pop-up attack maneuver in air combat operations, using flight data from a Brazilian Air Force pilot in a
6-degree-of-freedom flight simulator. By applying imitation learning techniques and comparing three
algorithms – Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and Gated Recurrent
Unit (GRU) – the research trains models to predict aircraft control inputs through sequences of state-action
pairs. The performances of these models were evaluated in terms of Root Mean Squared Error (RMSE),
coefficient of determination (R2), training time, and inference time. To further enhance the training dataset
with the aim of improving the robustness of the models, a Variational Autoencoder (VAE) was employed
to generate synthetic data. These findings demonstrate the potential for deploying such models in fully
autonomous aircraft, enhancing autonomous combat systems’ reliability and operational effectiveness in
real-world scenarios.

INDEX TERMS Air combat operations, generative learning, imitation learning, pop-up attack.

I. INTRODUCTION
The integration of autonomous systems into modern warfare
is rapidly increasing, offering enhanced capabilities and
operational efficiencies by taking over roles that traditionally
required human involvement [1]. These systems are deployed
across various military applications, from surveillance and
reconnaissance to direct combat engagement, where they
provide significant strategic benefits [2]. However, a key
challenge in their development remains to enable them to
execute complex tasks, such as air combat maneuvers, with
the proficiency of human pilots [3].

A pop-up attack, for instance, is a maneuver where a
fighter aircraft quickly ascends from a low altitude to engage
a ground target, followed by a rapid descent to avoid
counterattacks. This maneuver is a critical part of air combat
operations and involves elements of surprise and precise

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosario Pecora .

execution under extreme conditions, making it particularly
challenging to replicate autonomously [4].

To address this challenge, imitation learning, specifically
Behavior Cloning (BC), provides a promising approach
for training autonomous systems. BC allows agents to
learn by mimicking expert demonstrations, capturing human
decision-making and execution skills from collected flight
data [5]. This method is particularly effective for structured
tasks where expert strategies are well-established, such as
air combat maneuvers. In this work, BC is used to enable
autonomous agents to replicate complex maneuvers like the
pop-up attack with high fidelity [6].

While reinforcement learning could also be applied to
this problem, it introduces challenges such as the need
for carefully designed reward functions and long training
times for convergence [7]. Although reinforcement learning
can discover novel strategies through trial and error, its
learning process is often unstable and computationally
expensive. Nonetheless, RL has already been applied in air
combat scenarios, demonstrating its potential for maneuver

81204

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0003-0300-8027
https://orcid.org/0000-0003-2944-4476
https://orcid.org/0000-0001-5375-1076
https://orcid.org/0000-0001-9802-4809


J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

optimization and tactical decision-making [8], [9]. In con-
trast, BC follows a supervised learning approach, making
training more stable and data-efficient [10]. Moreover,
when expert demonstrations are available, imitation learning
enables models to directly replicate successful strategies
rather than searching for optimal actions independently.
This advantage is particularly relevant in air combat, where
decision-making is guided by established tactics and prior
knowledge. Given these factors, BC was chosen as the
primary method for training autonomous agents in this work,
ensuring they can effectively learn from expert pilots and
execute maneuvers with precision and reliability.

In addition to imitation learning, this work incorporates
generative learning techniques [11] to generate synthetic
flight data based on flight data from human pilots col-
lected from a simulation environment. The synthetic data
aims to improve the model’s performance, enabling better
generalization and enhancing the ability of autonomous
systems to perform complex air combat maneuvers. This
approach helps mitigate issues related to data limitations,
which are common when working with complex military
operations where collecting large amounts of real data may
be impractical or costly [12].

The main contribution of this study is the development of
models for autonomous pop-up attack maneuvers using imi-
tation learning, specifically BC. By training these models on
flight data collected from human pilots in a simulation envi-
ronment, the study aims to replicate human decision-making
in air combat operations. Additionally, synthetic data gener-
ation using generative learning is introduced to expand the
dataset, enhancing the robustness of the models. This work
enhances our understanding of autonomous systems’ ability
to perform reliably in dynamic and unpredictable combat
scenarios, emulating the proficiency of human pilots.

The remainder of this work begins with Section II, which
provides an operational background on the pop-up attack
maneuver, a key technique in air-to-ground combat. Follow-
ing this, in Section III, we present an overview of related
work, surveying key contributions in the fields of imitation
and generative learning applied to autonomous systems, with
a particular focus on the air domain. In Section IV, the
study details the data collection process, emphasizing the
role of a flight simulator model to capture the maneuver’s
complexities. This section also describes the development of
multiple BC models using different techniques and explores
generative learning methods to synthesize additional flight
data. In SectionV, we present the results and provide a perfor-
mance analysis of the models across various configurations.
Finally, Section VI concludes the work by discussing the
research outcomes and suggesting future directions.

II. OPERATIONAL BACKGROUND
The pop-up attack maneuver is a key technique in air-
to-ground combat, designed to enable a fighter aircraft to
approach and engage a target while minimizing its exposure
to enemy defenses [13]. This maneuver is initiated from

FIGURE 1. Flight profile for offset pop-up delivery.

a preplanned Pop-Up Point (PUP), which is strategically
selected to optimize the aircraft’s approach path and timing
for the attack sequence [4]. As depicted in Figure 1, the
offset pop-up maneuver typically involves an approach angle
ranging from 15◦ to 90◦ relative to the final attack heading.
This angular approach allows the pilot to visually acquire the
target early and maintain visual contact until the weapon is
released.

The maneuver begins as the aircraft reaches the PUP,
with the pilot initiating a climb at a minimum speed of
450 knots calibrated speed. At this point, the pilot selects
the appropriate power setting and executes a 3 − 4G
wings-level pull-up to achieve the planned climb angle.
Simultaneously, a chaff/flare countermeasure program is
activated, which releases metallic strips (chaff) and infrared
flares to confuse radar-guided and heat-seeking missiles,
respectively, protecting the aircraft from potential surface-
to-air threats. During the climb, the pilot must precisely
maintain the planned climb angle while carefully monitoring
the altitude gain [13], [14].

As the aircraft approaches the predetermined pull-down
altitude, the pilot executes a smooth roll towards the target,
followed by a 3 − 5G pull-down maneuver to intercept
the planned dive angle. During this phase, the pilot passes
through the track point, where the aircraft’s trajectory is
adjusted to ensure alignment with the target [14]. Achieving
this dive angle while aligning with the aim-off point (AOD),
which is the ground distance from the target where the
nose of the aircraft is pointed during tracking, is essential
for maintaining the preplanned delivery parameters. Minor
deviations in the attack heading are generally acceptable and
can be corrected during the final phase of the maneuver [13].

Throughout the maneuver, the pilot must make real-time
adjustments for any deviations in the pop-up point or
unanticipated wind conditions encountered during the climb.
The apex, the highest altitude reached in the pop-up delivery
profile, is typically reached approximately halfway through
the pull-downmaneuver, providing the necessary altitude and
positioning to execute the attack effectively. Additionally, the
distance from the final maneuver point to the target (MAP)

VOLUME 13, 2025 81205



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

must be carefully managed as it combines bomb range and
horizontal distance covered while tracking [13].

Given the precision required at each stage, the pop-up
attack maneuver is a highly complex and demanding
technique. Successfully executing this maneuver presents
significant challenges, especially for autonomous systems,
which must replicate the decision-making and real-time
adjustments that human pilots perform under dynamic
conditions.

III. RELATED WORK
Research on air combat operations has long recognized the
complexity and dynamic nature of these military engage-
ments. These operations require rapid decision-making,
precise execution, and the ability to adapt to evolving
threats in real-time [15]. Historically, human pilots have
been the base of air combat success, leveraging their skills
and decision-making abilities to outmaneuver adversaries.
However, with advancements in autonomous systems, there is
a growing focus on replicating and enhancing these capabil-
ities through automation [16], [17]. Integrating autonomous
technologies into air combat offers potential benefits such as
increased mission effectiveness, reduced cognitive load on
operators, and improved survivability, though it also presents
challenges in developing systems that can emulate human
decision-making in critical environments [18].

In this context, recent research has increasingly focused
on developing autonomous systems capable of executing
complex air combat maneuvers. These systems are designed
to handle a broad range of missions, including both close-
range air-to-air engagements (dogfighting) and beyond-
visual-range (BVR) combat, where detecting, tracking, and
engaging adversaries occur at long distances [19], [20].
Autonomous systems capable of excelling in air-to-air [21],
[22] and ground-to-air combat [23], as well as in air-
to-ground tactical operations, as presented in this study,
represent a significant advancement in modern military
aviation [24].
Imitation learning has emerged as a highly effective

method for training autonomous systems by enabling them to
mimic the decision-making processes of experienced pilots.
For instance, deep feature representation has been used
to map flight observations to continuous control actions
in autonomous helicopters, showcasing the feasibility of
transferring expert-level skills to autonomous systems [25].
Similarly, intelligent autopilot systems that learn pilot-
ing skills through imitation have successfully replicated
both low- and high-level flight skills, including complex
maneuvers [26]. Further work has explored the cloning of
fighter pilot strategies through imitation learning, allowing
autonomous systems to replicate intricate combat tactics,
proving effective in replicating decision-making patterns
under combat conditions [27]. Additionally, the DAgger
algorithm has been applied to train neural network-based
autopilots in uncrewed aerial systems (UAS), showing
significant improvements in generalization across diverse

flight maneuvers and proving effective in maintaining flight
stability and adaptability during complex aerial tasks [28].

Recent research has extended imitation learning to air
combat scenarios. For instance, exploratory studies have
highlighted its potential for modeling fighter pilot behavior,
enabling autonomous agents to replicate combat tactics and
decision-making strategies under dynamic and uncertain
environments [29]. This includes the development ofmethods
to capture the complex behaviors of pilots and translate them
into effective autonomous system strategies. Complementary
work has focused on data-driven behavioral modeling formil-
itary applications, emphasizing the integration of imitation
learning techniques to replicate the nuanced decision-making
processes of expert operators in defense scenarios [30]. These
studies demonstrate the critical role of imitation learning
in enhancing the operational capabilities of autonomous
systems, both in civilian and military aviation contexts,
by improving their ability to adapt to complex and high-stakes
situations.

Generative learning has been explored as a complemen-
tary approach to imitation learning, particularly for data
augmentation in training models. For example, generative
models have been employed to create motion control
policies, enabling autonomous systems to generalize to new
scenarios with synthesized data [31]. Additionally, Gener-
ative Adversarial Networks (GANs) have been applied to
iteratively improve data efficiency in reinforcement learning,
enhancing model performance [32]. Another approach uses a
GAN-based training model to generate high-quality synthetic
data for lightweight convolutional neural networks, address-
ing the shortage of training data and improving classifier
accuracy [33]. Generative models have also been utilized to
improve the robustness of object detection systems in low-
visibility environments, such as in [34], where synthetic data
augmentation effectively counters natural perturbations like
low light and blur, improving model robustness in real-world
scenarios.

Synthetic data has also been explored in military decision
support systems, focusing on its fidelity and applicability
in real-world scenarios. For instance, [35] evaluates the
effectiveness of synthetic data in replicating operational
conditions and enhancing decision-making processes in
complex environments. This work highlights the importance
of assessing synthetic data quality to ensure its reliability in
augmenting training datasets and supporting robust system
performance in military applications. Also, [36] introduced
resampling techniques to generate synthetic data to address
imbalanced data, which improved model reliability for
supervised learning in autonomous aircraft systems in the
context of aerial combat.

Previous work has examined the pop-up attack maneu-
ver as an optimization-based approach to tactical mission
planning, emphasizing weapon delivery precision, ballistic
trajectory control, and detection avoidance, thus serving as
a critical foundation for applications in both human-piloted
and autonomous aircraft systems [4]. Additionally, intent

81206 VOLUME 13, 2025



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

inference models have been applied in air defense contexts,
using flight profile analysis to predict potential weapon deliv-
ery points in pop-up scenarios, thereby enabling proactive
threat assessment and enhancing situational awareness [14].

IV. METHODOLOGY
This section outlines the methodological framework
employed in this work, focusing on developing both imitation
and generative learning models. The following subsections
detail the characteristics of the flight data and the approach
used to develop and evaluate multiple imitation learning
models. Additionally, this section introduces a generative
learning technique to produce synthetic data, aiming to
expand the dataset and enhance the robustness of the models.

A. FLIGHT DATA
The dataset for this research comprises 30 flight recordings
of pop-up attack maneuvers executed by a Brazilian Air
Force (FAB) fighter pilot. The flight data was collected using
AEROGRAF [37], a 6DOF (Six Degrees of Freedom) flight
simulator model based on the F-16 Fighting Falcon aircraft,
which was developed by the FAB. AEROGRAF served as
the predecessor to the Aerospace Simulation Environment
(ASA), also developed by the FAB [38], [39].
All flights in the dataset start from exactly the same initial

point and heading, located 5.9 nautical miles from the target
and with an altitude difference of about 146 meters, thus
providing a standardized initial condition for each maneuver.
These distances, altitudes, and headings were determined
in collaboration with subject matter experts to represent a
common operational scenario for this maneuver.

To ensure uniformity, each flight recording was trimmed
to match the shortest sequence length across all samples.
This process standardizes the data, enabling consistent inputs
for model training and reducing variability in training data,
which supports more reliable model performance. Figure 2
illustrates the flight patterns within this dataset, showing
the trajectories for each of the 30 flights utilized in this
study.

While this dataset provides valuable insights for train-
ing and evaluating autonomous agents, transitioning from
simulated environments to real-world deployment presents
several challenges. A key issue is the potential dynamic
mismatch between the simulator and a real aircraft. Unless
a high-fidelity, certified simulator is used, discrepancies in
system dynamics, response times, and environmental factors
could affect the transferability of trained models to real-
world scenarios. Given these challenges, the deployment of
autonomous agents should begin with extensive validation
in simulation, including tests with variations in model
parameters to assess robustness before considering real-
world implementation. In this context, the flight data used
in this study serves as an initial exploration for developing
autonomous agents capable of performing air combat maneu-
vers, providing a first study for future advancements.

FIGURE 2. Adjusted flight data for the 30 flights of the pop-up attack
maneuver executed by the human pilot.

B. IMITATION LEARNING MODELS
In this subsection, we will develop imitation learning models
designed to replicate the actions of a human pilot during
a pop-up attack maneuver. The models are trained to
predict control inputs based on the aircraft’s state, effectively
learning to perform the maneuver autonomously. We will
detail the process of constructing the imitation learning
models, beginning with the preparation of state and action
vectors from the recorded flight data, followed by presenting
the architectures of the different models. Finally, we will
clarify the model training process, how flight trajectory
predictions are made, and the methods used for evaluation
and analysis.

1) STATE AND ACTION VECTORS
To develop the imitation learning models, the flight data
was segmented into sequences of state-action pairs. The
state vectors, defined relative to the aircraft’s body frame,
included key variables: altitude, pitch, roll, and yaw angles,
along with radial angle, distance to the target, and altitude
difference between the aircraft and the target. The action
vectors consisted of the control inputs commanded by the
pilot: pitch, roll, and throttle. To ensure unbiased training, all
data was normalized using the mean and standard deviation
computed across the entire dataset.

All imitation learning models were trained in two configu-
rations: a baseline version, which excluded derived variables
such as linear velocities, angular velocities, and accelerations,
and a full version, which included all available state variables.
This approach was designed to emphasize the importance
of these derived variables and to demonstrate their impact
on model performance by comparing simpler models that
lack temporal dependency handling with those capable of
capturing it. The variables used in the state and action

VOLUME 13, 2025 81207



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

TABLE 1. State and action variables used in the imitation learning model.

vectors are detailed in Table 1, which outlines the units and
descriptions of each variable.

2) MULTI-LAYER PERCEPTRON
The Multi-Layer Perceptron (MLP) model, a type of Feed-
forward Neural Network, was designed to efficiently learn
the relationship between flight states and actions by utilizing
fully connected layers that apply non-linear transformations
to capture complex patterns between state variables and
action predictions [40]. We propose a model based on
this MLP architecture, implemented using TensorFlow [41],
whose final structure is illustrated in Figure 3, depicting
the layers of the MLP-based imitation learning model. The
architecture includes the following layers:

• Dense Layer 1: A fully connected layer with 128 units,
ReLU activation, serving as the first internal layer to
capture high-dimensional relationships in the input data.

• Dense Layer 2: A fully connected layer with 64 units,
ReLU activation, providing further non-linear transfor-
mations for improved model accuracy.

• Dense Layer 3: A fully connected layer with 32 units,
ReLU activation, refining the learned representations.

• Output Layer: The final output layer has 3 units
corresponding to the predicted actions (JX, JY, and
Throttle), without any activation function, to output
direct action values.

FIGURE 3. Architecture of the MLP-based imitation learning model.

3) LONG SHORT-TERM MEMORY NETWORK
The Long Short-Term Memory (LSTM) network, an
advanced type of Recurrent Neural Network (RNN), was
designed to capture complex temporal dependencies in
sequential data. LSTMs are particularly effective in learning
long-term dependencies, making them ideal for time-series
data where each output relies on prior inputs [42].We propose
a model based on an LSTM architecture, also implemented
using TensorFlow, with its final structure illustrated in
Figure 4 and consisting of the following layers:

• LSTM Layer: The first layer of the network is an
LSTM (Long Short-TermMemory) layer with 128 units,
which captures temporal dependencies across the entire
sequence. It processes each step of the input data while
maintaining a sequential nature, allowing the model to
learn from past steps and make predictions based on
long-term dependencies in the data.

• TimeDistributed Dense Layer 1: The second layer is a
TimeDistributed Dense layer with 64 units and ReLU
activation. The TimeDistributed wrapper applies the
Dense layer to each time step independently, allowing
the network to learn complex relationships between the
input state and the predicted action at each time step in
the sequence.

• TimeDistributed Dense Layer 2: Another TimeDis-
tributed Dense layer with 32 units and ReLU activation
further refines the predictions. Like the previous layer,
it is applied independently to each time step, adding
non-linear transformations that enhance the network’s
ability to handle complex sequential patterns.

• Output Layer: The final layer is a TimeDistributed
Dense layer with 3 units (corresponding to the actions:
JX, JY, and Throttle) and no activation function. This
layer produces the directly predicted values for each
action at each time step, allowing the network to output

81208 VOLUME 13, 2025



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

FIGURE 4. Architecture of the LSTM-based imitation learning model.

continuous values, which is typical for regression tasks
where real-valued outputs are predicted.

4) GATED RECURRENT UNIT
TheGated Recurrent Unit (GRU)model provides a simplified
alternative within the RNN family. Compared to Long
Short-Term Memory (LSTM) networks, GRUs utilize a
simpler structure with fewer parameters bymerging the forget
and input gates into a single update gate and removing
the cell state [43]. This efficient design allows GRUs to
achieve performance similar to LSTMs while lowering
computational costs, making them effective for tasks like
trajectory prediction. Despite its simplicity, the GRU can
maintain essential temporal relationships in the data, making
it a practical choice for this work. We propose a model based
on this GRU architecture, with the final design illustrated in
Figure 5, which depicts the layers of the GRU-based imitation
learning model. The architecture includes the following
layers:

• GRU Layer: The first layer consists of a GRU with
128 units, configured to return sequences. Like the
LSTM, the GRU captures temporal dependencies across
the entire sequence, processing each time step while
preserving the sequence’s sequential nature. The GRU
layer is similar to the LSTMbut is more computationally
efficient, as it uses fewer parameters while still learning
long-term dependencies in the data.

• TimeDistributed Dense Layer 1: A TimeDistributed
Dense layer with 64 units and ReLU activation is applied
to each time step independently. This allows the model
to learn complex relationships between the input states
and the corresponding action predictions at each time
step in the sequence.

FIGURE 5. Architecture of the GRU-based imitation learning model.

• TimeDistributed Dense Layer 2: A second TimeDis-
tributed Dense layer with 32 units and ReLU activation
further refines the predictions by introducing additional
non-linear transformations. Just like the first TimeDis-
tributed layer, this layer is applied independently to each
time step, enhancing the model’s capacity to capture
intricate patterns in sequential data.

• Output Layer: The final TimeDistributed Dense layer
has 3 units (corresponding to the actions: JX, JY,
and Throttle), producing the directly predicted values
for each action at each time step in the sequence.
The absence of an activation function ensures that
the network can output continuous values, typical of
regression tasks.

5) MODEL TRAINING
The training process involved 5-fold cross-validation to
ensure robust evaluation of the models. The dataset was
split, with 30% reserved for testing and the remaining 70%
used for training and validation. During cross-validation,
the models were trained and evaluated across each fold,
using the Adam optimizer [44] with a learning rate of 10−5

and the Mean Squared Error (MSE) loss function, which is
suitable for continuous regression problems. A batch size of
32 was employed to maintain computational efficiency while
balancing memory usage and training stability.

Within each fold, early stopping was implemented with
a patience of 20 epochs, monitoring the validation loss to
prevent overfitting. This allowed the training process to
halt if no improvement was detected in validation loss over
20 consecutive epochs, thus reducing the risk of overfitting
to a particular fold. Hyperparameter tuning was carried out
using random search [45], covering a range of configurations

VOLUME 13, 2025 81209



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

for activation functions, the number of units per layer, the
depth of the model (number of layers), learning rate, and
batch size. This randomized search process allowed for
the exploration of diverse model architectures, optimizing
the choice of hyperparameters to enhance the models’
performance while maintaining generalization capabilities.
In this study, only the best-performing architectures for each
model, as determined through tuning, are presented, focusing
on configurations that maximize performance and stability.

Once cross-validation was complete, the final models
were trained on the entire dataset, leveraging all available
data to enhance model performance. In this phase, early
stopping was not employed since no dedicated validation
group was available. Instead, the number of epochs for
this training was determined based on the average number
of epochs achieved during cross-validation, providing an
empirically informed stopping criterion to ensure that the
models were sufficiently trained without excessive epochs.
By incorporating all data, the models gained the advantage of
a more comprehensive training set, which could contribute to
improved generalization on unseen samples.

To address the high variability observed in the results
with the addition of synthetic data, the final model was
trained five times using different seeds. This approach aimed
to enhance the robustness of the results by averaging the
performance across multiple runs, thereby mitigating the
effects of random initialization and stochastic processes
during training. This methodology ensured more stable and
reliable results, particularly given the variability introduced
by the synthetic data.

The entire training process was conducted on a system
with 20 cores of the Intel Xeon Gold 6230R CPU, running
at 2.10 GHz, and 40 GB of RAM, providing sufficient
computational resources to handle the training workload
efficiently.

6) PREDICTION OF FLIGHT TRAJECTORIES
Different methods were employed to predict flight tra-
jectories based on the model type. For the MLP model,
a single-step prediction approach was used, where each
state vector was treated independently. The MLP model
predicted the corresponding action for each time step without
considering a sequence of states. This was implemented
using a function that normalizes the input state sequence
and uses the trained model to predict actions across the
entire sequence. The actual and predicted actions were then
collected for comparison, with the results plotted to show the
mean and standard deviation of the trajectories.

In contrast, the LSTM and GRU models, designed to cap-
ture temporal dependencies, used a sliding window approach
(Figure 6). In this method, the input data was segmented
into overlapping state sequences of fixed length, allowing the
models to learn patterns across time effectively. The sequence
length was set to 5, chosen based on experimentation with
values of 3, 5, 10, 15, and 20. This choice proved effective,
as it balances capturing temporal dependencies efficiently

and aligns well with the maneuver length of 39 frames.
Each window contained a sequence of consecutive time
steps, with a fixed overlap (stride = 1), ensuring that
the model maintained continuity across predictions [46],
[47]. These sequences were provided to the model to
generate action predictions, where each window produced a
prediction for the last time step, and these predictions were
accumulated sequentially to reconstruct the entire trajectory.
Any remaining time steps not covered by the sliding windows
were filled by repeating the first predicted action, ensuring
consistency with the original sequence length. The function
for the LSTM and GRU models included normalization of
each window, model prediction, and denormalization of the
output actions. The complete process for this sliding window
approach is outlined in Algorithm 1.

Algorithm 1 Sliding Window Approach for Predicting Full
Flight Trajectories (LSTM and GRU)
1: Input: Full sequence of state vectors
2: Output: Predicted full trajectory
3: Initialize an empty list for storing predicted actions
4: Divide the full sequence into overlapping windows of fixed length L (where L = 5)

with a stride of 1
5: for each window do
6: Reshape the window to match the input shape expected by the model
7: Feed the window into the model to predict the action for the last time step
8: Append the predicted action to the list of predicted actions
9: end for
10: if any remaining time steps were not covered by the windows then
11: Fill the first uncovered time steps with the first predicted action, repeating it
12: end if
13: Return the complete predicted trajectory

7) EVALUATION AND ANALYSIS
The predicted trajectories were compared with the actual
recorded maneuvers to assess the model’s performance in
replicating realistic flight actions. The evaluation metrics,
including Root Mean Squared Error (RMSE) and the
Coefficient of Determination (R2), were calculated on the
denormalized output values to ensure that predictive accuracy
reflects the original scales of the actions. Additionally,
a comparative analysis of the mean and standard deviation
of the predicted actions was conducted against the actual
actions, providing insights into the precision and consistency
of the model’s predictions. This analysis highlighted any
areas where variability diverged from the real maneuvers,
allowing for a deeper understanding of the model’s stability
across different time steps and scenarios and identifying
specific areas for further refinement.

C. GENERATIVE LEARNING MODEL
This subsection details the generative learning model
employed in this work. A Variational Autoencoder (VAE),
implemented using TensorFlow, is used to generate syn-
thetic flight data that replicates the dynamics of pop-up
attack maneuvers. The VAE architecture allows the model
to learn a low-dimensional latent representation of the
high-dimensional flight data, which is then sampled to

81210 VOLUME 13, 2025



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

FIGURE 6. Sliding window approach with overlapping sequences to predict flight trajectory across 39 timesteps. Only the first window and predicted
action are labeled to illustrate the pattern followed by all subsequent windows.

generate synthetic sequences. These sequences enhance the
training dataset and improve model robustness.

1) DATA PREPROCESSING
To prepare the flight data for VAE training, all available
recordings of the pop-up attackmaneuver were processed and
normalized. The data was loaded from text files and stripped
of irrelevant columns. Next, the data was normalized by
subtracting the mean and dividing by the standard deviation
computed across all flight records, ensuring a consistent scale
across variables.

2) ARCHITECTURE
The VAE model consists of three main components: the
encoder, the latent space sampling, and the decoder. The
encoder compresses the input flight data into a latent rep-
resentation, the latent space sampling introduces variability
into the model, and the decoder reconstructs the data from
the latent space.

• Encoder: The encoder takes an input sequence of
specified length and dimensionality, passing it through
a bidirectional LSTM layer with 256 units and L2 reg-
ularization to prevent overfitting [48]. This is followed
by a Dense layer with 128 units and ReLU activation.
A dropout layer with a rate of 0.4 is applied after the
Dense layer to further enhance regularization [49]. The
encoder outputs two vectors representing the mean and
variance of the latent space distribution.

• Latent Space Sampling: To introduce variability in
the synthetic data, a sampling function generates latent
vectors by combining the mean and variance vectors
with Gaussian noise. The latent dimension was set to
50, enabling the VAE to capture the underlying structure
of the flight data while maintaining computational
efficiency.

• Decoder: The decoder reconstructs the input data from
the sampled latent vector. Since the latent vector rep-
resents a single compressed representation of the input
sequence, it is first passed through a RepeatVector
layer to match the sequence length, enabling the
decoder to process each timestep independently. The
RepeatVector effectively ‘‘repeats’’ the latent vec-
tor across the number of timesteps, preparing it for
the next layers. Following this, a Dense layer with
128 units and ReLU activation is applied, with a dropout

layer (rate 0.4) to provide additional regularization.
A TimeDistributed LSTM layer with 256 units processes
the repeated latent vectors over time, followed by an
output layer with linear activation that produces the final
reconstructed sequence.

3) LOSS FUNCTION
The VAE’s loss function consists of two terms:

• Reconstruction Loss: This term, based on the mean
squared error, measures the difference between the orig-
inal input sequence and its reconstruction, summed over
all timesteps. It ensures that the generated sequences
closely resemble the original data.

• KL Divergence Loss: The Kullback-Leibler (KL)
divergence term regularizes the latent space, encourag-
ing it to follow a standard Gaussian distribution [50].
This term is weighted by a factor β to balance between
generating realistic data and maintaining a smooth latent
space.

4) TRAINING PROCEDURE
The VAE was trained using an Adam optimizer with
a learning rate scheduler that decays exponentially over
training epochs, starting with an initial learning rate of
1 × 10−3, decay steps of 10, 000, and a decay rate of 0.9.
This approach facilitates efficient convergence by reducing
the learning rate as training progresses. Early stopping with
the patience of 20 epochs was employed to stop training
once the validation loss plateaued, ensuring efficient learning
without overfitting. The training was conducted with a
large maximum number of epochs (1,000,000) to ensure
convergence, though early stopping typically halted training
much earlier. The training was conducted with a batch size of
32 and a validation split of 20%.

5) SYNTHETIC DATA GENERATION
After training, the decoder component of the VAE was
extracted and used to generate synthetic flight sequences
by sampling from the latent space. Synthetic samples were
generated in quantities of 7, 15, 30, 45, 60, and 150 to assess
the impact of varying amounts of synthetic data on model
performance, with generation reaching up to 5 times the size
of the original dataset (30). These synthetic sequences were
combined with real flight data to enrich the training dataset,

VOLUME 13, 2025 81211



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

ultimately enhancing the model’s robustness in learning from
a diverse set of trajectories.

6) FINE-TUNING OF SYNTHETIC DATA
To enhance the realism of the synthetic flight data, a fine-
tuning process was applied to the generated sequences. This
process involved using a centered moving average to smooth
the generated trajectories, reducing noise while preserving
essential maneuver characteristics. Through experimentation,
a moving average window of 10 frames was found to provide
a suitable balance, ensuring that the synthetic data aligns
more closely with the patterns observed in real flight data.

Additionally, subject matter experts (SMEs) from FAB
reviewed and qualitatively validated the generated data
through visual inspection, ensuring consistency with how a
real pilot would execute the maneuver. Their expertise helped
confirm that the synthetic sequences followed expected
flight dynamics, reinforcing the reliability of the augmented
dataset.

D. EVALUATION OF SYNTHETIC DATA IMPACT ON MODEL
PERFORMANCE
To evaluate the impact of synthetic data on model per-
formance, synthetic samples generated by the Variational
Autoencoder (VAE) were added to the training and validation
datasets. In each configuration, we maintained a consistent
test set across all experiments to ensure that any observed
performance differences were attributable exclusively to the
additional synthetic data.

For each configuration (baseline and full), we trained
models (MLP, LSTM, and GRU) on these augmented training
sets and evaluated them using metrics such as R2, RMSE,
training time, and inference time. It is important to note
that the reported inference time corresponds to predicting
the entire test dataset, which remained the same across all
models for consistency. This process enabled a thorough
analysis of how incorporating synthetic data affects model
training dynamics and performance potential, particularly in
the context of replicating complex maneuvers. By gradually
increasing the synthetic data volume, we aimed to assess its
role in improving model robustness and generalization.

V. RESULTS AND DISCUSSION
In this section, we present the outcomes of our experiments
and analyze the impact of the proposed methods. In the
first subsection, V-A, we evaluate the performance of imi-
tation learning techniques in replicating specific maneuvers
based on actual flight data. The second subsection, V-B,
examines the role of synthetic data in enhancing model
performance, particularly in scenarios with limited real-
world data. Together, these analyses provide insights into the
effectiveness of combining imitation learning with synthetic
data generation for robust trajectory prediction and maneuver
execution.

A. IMITATION LEARNING FOR MANEUVER EXECUTION
The performance of the imitation learning models was
evaluated on the test set, with models trained in both baseline
(without derived variables) and full (with all state variables)
configurations. Table 2 summarizes the performance metrics
for each model configuration, presenting the final R2 and
RMSE values, as well as training and inference times.

The results indicate that including all state variables (full
configuration) consistently improves model performance
across all architectures, as reflected in higher R2 and lower
RMSE compared to the baseline. This effect is particularly
beneficial for models that do not explicitly capture temporal
dependencies, as they cannot infer hidden states over time.
In contrast, recurrent architectures such as LSTM and GRU
can leverage sequential patterns to partially compensate for
missing state information.

For models designed to handle sequential data, such as
LSTM and GRU, the full configuration also led to substantial
improvements, reinforcing the importance of leveraging
temporal dependencies for enhanced predictive accuracy.
These models exhibited significant gains over the baseline,
showing that access to complete state information contributes
to better trajectory estimation.

Regarding computational efficiency, the GRU model had
the shortest training time in the baseline configuration,
while MLP maintained the fastest inference time across both
configurations. The inclusion of additional state variables
slightly increased computational demand across all models,
but the improvements in predictive performance justify the
trade-off.

Among all tested models, GRU in the full configuration
achieved the best balance of accuracy and computational
efficiency, making it a strong candidate for real-time
maneuver prediction tasks. However, in real-world scenarios,
accessing all state variables may not always be feasible due
to sensor limitations, communication delays, or operational
constraints. These factors highlight the relevance of the
baseline configuration, where synthetic data played a key
role in compensating for missing information, demonstrating
its potential to enhance model robustness under real-world
constraints.

Figure 7 provides a detailed comparison between the
actual and predicted actions for JX, JY, and Throttle during
the pop-up attack maneuver, specifically illustrating the
results from the best-performing model, the GRU in the full
configuration. At the beginning of the maneuver, there is a
slight delay of 5 steps due to the window size, as the full
sequence is divided into overlapping windows of fixed length
L = 5. Solid blue lines represent the mean of the actions
taken by the pilot, while the dashed red lines illustrate the
model’s predictions. The shaded regions around the mean of
the pilot’s actions indicate the standard deviation, calculated
from the dataset of recorded maneuvers, to visually represent
variability in the pilot’s actions. Similarly, the shaded regions
around the predicted actions show the standard deviation of

81212 VOLUME 13, 2025



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

TABLE 2. Performance metrics for imitation learning models (baseline and full configurations). Values are presented as mean ± standard deviation,
calculated over multiple executions with five different seeds. The best values in each column are highlighted in blue.

FIGURE 7. Trajectory comparison – actual vs predicted actions with mean and standard deviation for pitch (JX), roll (JY), and Throttle during the pop-up
attack maneuver.

the model’s predictions across multiple test sequences. This
highlights the model’s consistency in capturing the maneuver
patterns, as well as its robustness in generating realistic action
sequences across different test instances.

Examining the plots in Figure 7, we observe the following
key insights regarding the model’s ability to replicate the pop-
up maneuver:

• JX: The GRU-based model closely mirrors the actual
pitch actions, maintaining alignment with the gen-
eral trend throughout the maneuver. However, during
segments with higher variability, the model slightly
underestimates the amplitude. This underestimation is
still within the standard deviation range, indicating an
acceptable degree of accuracy.

• JY: The roll predictions are remarkably accurate,
especially in capturing sharp transitions. The model’s
predictions align closely with the actual roll actions,
deviating only slightly at certain peaks. These minor
deviations fall within the shaded variability range,
highlighting the model’s effectiveness in tracking rapid
changes in roll.

• Throttle: The model demonstrates a high level of
accuracy in predicting throttle actions, especially during
prolonged phases of consistent throttle application.
Minor discrepancies appear during abrupt throttle tran-
sitions; however, these remain well within the standard
deviation range, showcasing the model’s robustness in
handling throttle adjustments.

Examining the plots in Figure 7, we observe that the visual
alignment between the predicted and actual actions across all

three control inputs reinforces the quantitative performance
metrics, such as R2 and RMSE. This confirms the GRU
model’s ability to capture the intricate dynamics of the pop-
up maneuver. The shaded regions around the actual actions,
which represent pilot variability, demonstrate that themodel’s
predictions consistently fall within the expected range. This
further supports the model’s potential applicability in both
pilot training and autonomous maneuver systems.

B. SYNTHETIC DATA FOR MODEL IMPROVEMENT
To assess the impact of synthetic data on model performance,
we incrementally added synthetic flight samples to the
training and validation datasets while keeping the test
dataset consistent across all experiments. This approach
enabled a systematic evaluation of how synthetic data affects
model generalization and prediction accuracy for maneuver
trajectories. Since the inference time of the models should
not depend on the amount of training data and was already
analyzed in previous sections, we only report the training
time in this subsection. We present our findings separately
for the baseline configuration (Section V-B1) and the
full configuration (Section V-B2) to highlight how the
inclusion of synthetic data influences model performance
under different levels of available real-world features.

1) BASELINE CONFIGURATION
Table 3 presents the results for the baseline configuration,
bringing the number of synthetic samples, R2, RMSE,
and training time in seconds. Results are shown as
mean ± standard deviation over five runs. The best R2,

VOLUME 13, 2025 81213



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

TABLE 3. Performance metrics for imitation learning models in baseline configuration when synthetic samples are added to the training and validation
datasets. Values are presented as mean ± standard deviation over five runs. The best R2, RMSE, and Training Time for each model are highlighted in blue.

RMSE, and training time for each model are highlighted
in blue.

For this configuration, synthetic data had a notable impact
on the performance of models, particularly for the MLP
architecture. The inclusion of synthetic samples improved the
MLP’s R2, with the highest value observed at 60 synthetic
samples. However, RMSE slightly increased beyond this
point, suggesting a reduced benefit as more synthetic data
was added. This trend likely occurs because, while additional
synthetic data expands the training set, it may also introduce
redundancy or noise, limiting further improvements in
predictive accuracy.

In contrast, recurrent architectures such as LSTMandGRU
exhibited more stable performance across different numbers
of synthetic samples, with only slight variations in R2 and
RMSE. This stability suggests that these models already
extract sufficient temporal patterns from the available real
data, making additional synthetic samples less impactful.
Unlike MLP, which does not explicitly model temporal
dependencies and can benefit from increased data diversity,
LSTM and GRU inherently capture sequential patterns,
reducing their reliance on dataset augmentation.

Training time increased consistently with the number of
synthetic samples for all models. However, MLP showed the
most significant increase, likely due to its fully connected
structure requiring more updates per additional sample.
In contrast, GRU remained themost computationally efficient
model, benefiting from its simplified gating mechanism
compared to LSTM. The key reason for GRU’s efficiency can
be attributed to its architectural design. Unlike LSTM, which
has separate forget, input, and output gates, GRU combines
these operations into fewer gates, specifically the update and
reset gates. This more compact structure reduces the number
of parameters and matrix operations required per timestep,
leading to faster training times [40].

2) FULL CONFIGURATION
Table 4 presents the results for the full configuration. As in
the baseline case, the table reports the number of synthetic

samples, R2, RMSE, and training time in seconds, with the
best results for each model highlighted in blue.
In this configuration, synthetic data was not only less

useful but, in many cases, made performance worse for
all models. Unlike in the baseline setup, where MLP still
benefited from synthetic data, in the full configuration,
adding synthetic samples consistently led to lower R2 values
and higher RMSE across MLP, LSTM, and GRU. The best
results for all models occurred with the smallest number
of synthetic samples (7 for LSTM, GRU, and MLP), and
performance dropped as more synthetic data was added.

A possible reason for this is that, in the full configuration,
models already had access to a richer set of real-world
features that provided enough information for learning. The
synthetic data, instead of adding useful diversity, may have
introduced inconsistencies or patterns that did not fully match
the real data distribution. This could have confused the
models, leading to worse generalization.

Training time also increased as more synthetic samples
were added, which was expected. However, since the extra
data did not improve performance, this additional computa-
tional cost brought no real benefit in this configuration.

3) SUMMARY OF FINDINGS
The evaluation of synthetic data inclusion across different
configurations highlights key insights:

• MLP improved in the baseline configuration: MLP
showed the most gains with synthetic data, reaching the
highest R2 at 60 synthetic samples. Beyond this, RMSE
increased, likely due to overfitting or redundant patterns.

• LSTM and GRU remained stable in the baseline
configuration: Both models showed minimal variation
across different amounts of synthetic data, indicating
that they effectively captured temporal dependencies
from real data without requiring augmentation.

• Synthetic data reduced performance in the full
configuration:Unlike in the baseline, synthetic samples
consistently lowered R2 and increased RMSE in the

81214 VOLUME 13, 2025



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

TABLE 4. Performance metrics for imitation learning models in full configuration when synthetic samples are added to the training and validation
datasets. Values are presented as mean ± standard deviation over five runs. The best R2, RMSE, and Training Time for each model are highlighted in blue.

full configuration for all models, likely introducing
inconsistencies instead of useful variability.

• Training time increased:As expected, adding synthetic
data raised training time for all models. MLP saw
the highest increase, while GRU remained the most
efficient.

Notably, the baseline configuration provides a more
realistic approximation of real-world operational constraints,
as pilots often rely on a partial state space with a limited sub-
set of available variables for decision-making. In this context,
synthetic data proved to be effective, expanding the training
set and introducing additional variability that contributed to
improved performance. These findings highlight the potential
of synthetic data to mitigate data scarcity and enhance model
robustness in environments where real-world features are
limited.

VI. CONCLUSION AND FUTURE WORK
This study successfully developed models to replicate the
complex pop-up attack maneuver in air combat, utilizing
simulated flight data from an FAB fighter pilot. Through
imitation learning techniques with MLP, LSTM, and GRU
networks, the research demonstrated that these models
could effectively predict aircraft control inputs, closely
mimicking the execution patterns of experienced pilots.
Validated through cross-validation and test group evaluations,
the models showed strong potential for integration into
autonomous combat systems.

The BC approach achieved satisfactory replication of the
pop-up maneuver, especially when using state variables that
reflect temporal aspects, such as angular and linear velocities
and accelerations. Among the tested models, the GRU net-
work achieved the highest performance, effectively capturing
temporal dependencies while maintaining computational
efficiency, making it particularly suitable for autonomous
maneuver execution.

Additionally, we explored generative learning techniques
to produce synthetic data that closely mirrors the collected

flight data. This approach has the potential to enhance model
performance, particularly in scenarios where the agent’s state
space is not fully known or when non-temporal-dependent
algorithms are used. Initial findings suggest that carefully
integrated synthetic data can improvemodel performance and
enhance generalization.

While these results are promising, there is room for
improvement. Future work will focus on expanding the
dataset by collecting additional flight recordings from pilots
with different profiles and capturing a more diverse range of
strategies and variations in maneuver execution. Expanding
data collection to include a wider variety of maneuvers
relevant to air combat operations, such as missile evasion and
engagement with enemy aircraft, will further improve model
generalization. Additionally, evaluations with real flight data
will be considered, enabling model updates and reducing
the gap between simulation-based training and real-world
applicability.

Despite the challenges associated with reinforcement
learning, as discussed at the beginning of this work, it remains
a valuable research direction for this domain. Future work
could also investigate how reinforcement learning can be used
to discover innovative approaches for executing ground attack
maneuvers, potentially identifying strategies that differ from
traditional expert-driven tactics. Moreover, future studies
could explore testing alternative imitation and generative
learning approaches, such as adversarial imitation learning
(AIL) and transformer-based sequence models, which have
shown promise in sequential decision-making tasks [51],
[52]. Combining reinforcement learning with imitation
learning could also be explored as a way to balance stability
with adaptability, allowing autonomous agents to refine their
skills while maintaining the benefits of expert guidance [53].
Furthermore, future studies should explore how well the

models handle sudden and unforeseen operational states, such
as extreme maneuvers, unexpected inputs, and variations in
mission parameters such as different aircraft configurations
and threat levels, ensuring that autonomous agents can adapt

VOLUME 13, 2025 81215



J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

beyond the conditions seen during training. Another impor-
tant direction is addressing the risk of excessive dependence
on synthetic data by improving the balance between real
and synthetic samples during training, validating the models
with real flight data, and refining synthetic data generation to
better match a large variety of real-world conditions.

SOURCE CODE
The source code for this research is publicly available at
https://github.com/jpadantas/pop-up_attack_generative. This
repository contains the scripts and models used in this work.
The flight data, however, is not available due to its classified
nature.

REFERENCES
[1] P. D. Scharre, ‘‘The opportunity and challenge of autonomous systems,’’

in Autonomous Systems: Issues for Defence Policymakers. Norfolk, VA,
USA: NATO Headquarters Supreme Allied Commander Transformation,
2015, pp. 3–26.

[2] T. R. Ryan and V. Mittal, ‘‘Potential for army integration of autonomous
systems by warfighting function,’’ Mil. Rev., vol. 99, no. 5, p. 122,
Jan. 2019.

[3] J. S. McGrew, ‘‘Real-time maneuvering decisions for autonomous air
combat,’’ Master’s thesis, Dept. Aeronaut. Astronaut., Massachusetts Inst.
Technol., Cambridge, MA, USA, 2008.

[4] N.Wang, L.Wang, Y. Bu, G. Zhang, and L. Shen, ‘‘Tactical aircraft pop-up
attack planning using collaborative optimization,’’ in Proc. Intell. Comput.
5th Int. Conf. Emerg. Intell. Comput. Technol. Appl. Berlin, Germany:
Springe, Jan. 2009, pp. 361–370.

[5] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, ‘‘Imitation learning:
A survey of learning methods,’’ ACM Comput. Surveys, vol. 50, no. 2,
pp. 1–35, Apr. 2017, doi: 10.1145/3054912.

[6] H. Wang, X. Liu, and X. Zhou, ‘‘Autonomous UAV interception via
augmented adversarial inverse reinforcement learning,’’ in Proc. Int.
Conf. Auto. Unmanned Syst. (ICAUS). Singapore: Springer, Jan. 2022,
pp. 2073–2084, doi: 10.1007/978-981-16-9492-9_205.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[8] P. Ribu Gorton, A. Strand, and K. Brathen, ‘‘A survey of air combat
behavior modeling using machine learning,’’ 2024, arXiv:2404.13954.

[9] J. P. A. Dantas, M. R. O. A. Maximo, and T. Yoneyama, ‘‘Autonomous
agent for beyond visual range air combat: A deep reinforcement learning
approach,’’ in Proc. ACM SIGSIM Conf. Princ. Adv. Discrete Simul.,
Jun. 2023, pp. 48–49, doi: 10.1145/3573900.3593631.

[10] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi, ‘‘A survey of
imitation learning: Algorithms, recent developments, and challenges,’’
2023, arXiv:2309.02473.

[11] S. Bond-Taylor, A. Leach, Y. Long, and C. G.Willcocks, ‘‘Deep generative
modelling: A comparative review of VAEs, GANs, normalizing flows,
energy-based and autoregressive models,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 11, pp. 7327–7347, Nov. 2022.

[12] S.-J. Park, S.-S. Park, H.-L. Choi, K.-S. An, and Y.-G. Kim, ‘‘An expert
data-driven air combat maneuver model learning approach,’’ in Proc. AIAA
Scitech Forum, Jan. 2021, pp. 1–21, doi: 10.2514/6.2021-0526.

[13] United States Air Force, Multi-Command Handbook 11-F16, vol. 5.
Washington, DC, USA: Air Combat Command, May 1996.

[14] P. H. Foo, G. W. Ng, K. H. Ng, and R. Yang, ‘‘Application of intent
inference for air defense and conformance monitoring,’’ J. Adv. Inf. Fusion
(JAIF), vol. 4, pp. 3–26, Jan. 2009.

[15] J. P. A. Dantas, A. N. Costa, D. Geraldo, M. R. O. A. Maximo, and
T. Yoneyama, ‘‘Engagement decision support for beyond visual range
air combat,’’ in Proc. Latin Amer. Robot. Symp. (LARS), Brazilian
Symp. Robot. (SBR), Workshop Robot. Educ. (WRE). Natal, Brazil: IEEE,
Oct. 2021, pp. 96–101.

[16] X. Dou, G. Tang, A. Zheng, H. Wang, and X. Liang, ‘‘Research
on autonomous decision-making in manned/unmanned coordinated air
combat,’’ in Proc. 9th Int. Conf. Control, Autom. Robot. (ICCAR),
Apr. 2023, pp. 170–178, doi: 10.1109/ICCAR57134.2023.10151765.

[17] Z. Wang, K. Li, L. Wang, and X. Liu, ‘‘Research on an air combat maneu-
vering decision control method,’’ inProc. 42ndChin. Control Conf. (CCC),
Jul. 2023, pp. 3720–3725, doi: 10.23919/ccc58697.2023.10240373.

[18] G. H. Gunsch, D. E. Dyer, M. J. Gerken, L. D. Merkle, and M. A. Whelan,
‘‘Autonomous agents as air combat simulation adversaries,’’ Proc. SPIE,
vol. 1963, pp. 50–60, Mar. 1993, doi: 10.1117/12.141754.

[19] A. N. Costa, J. P. A. Dantas, E. Scukins, F. L. L. Medeiros,
and P. Ögren, ‘‘Simulation and machine learning in beyond visual
range air combat: A survey,’’ IEEE Access, vol. 13, 2025, doi:
10.1109/ACCESS.2025.3563811.

[20] J. P. A. Dantas, M. R. O. A. Maximo, A. N. Costa, D. Geraldo, and
T. Yoneyama, ‘‘Machine learning to improve situational awareness
in beyond visual range air combat,’’ IEEE Latin Amer. Trans.,
vol. 20, no. 8, pp. 2039–2045, Aug. 2022. [Online]. Available:
https://latamt.ieeer9.org/index.php/transactions/article/view/6530

[21] J. P. A. Dantas, A. N. Costa, D. Geraldo, M. R. O. A. Maximo,
and T. Yoneyama, ‘‘Weapon engagement zone maximum launch range
estimation using a deep neural network,’’ in Proc. Intell. Syst., A. Britto
and K. Valdivia Delgado, Eds., Cham, Switzerland: Springer, 2021,
pp. 193–207.

[22] J. P. Dantas, A. N. Costa, D. Geraldo, M. R. Maximo, and T. Yoneyama,
‘‘PoKER: A probability of kill estimation rate model for air-to-air
missiles using machine learning on stochastic targets,’’ J. Defense Model.
Simul., Appl., Methodology, Technol., vol. 31, pp. 1–32, Jan. 2025, doi:
10.1177/15485129241309675.

[23] J. P. A. Dantas, D. Geraldo, F. L. L. Medeiros, M. R. O. A. Maximo, and
T. Yoneyama, ‘‘Real-time Surface-to-Air missile engagement zone predic-
tion using simulation andmachine learning,’’ inProc. Interservice/Industry
Training, Simul. Educ. Conf. (I/ITSEC), Orlando, FL, USA:, Nov. 2023.
This is the reference: J. P. Dantas, A. N. Costa, D. Geraldo, M. R. Maximo,
and T. Yoneyama, ‘‘PoKER: A probability of kill estimation rate model for
air-to-air missiles usingmachine learning on stochastic targets,’’ J. Defense
Model. Simul., 2025, doi: 10.1177/15485129241309675.

[24] J. A. Miller, P. D. Minear, A. F. Niessner, A. DeLullo, B. Geiger,
L. N. Long, and J. F. Horn, ‘‘Intelligent unmanned air vehicle flight
systems,’’ J. Aerosp. Comput., Inf., Commun., vol. 4, no. 5, pp. 816–835,
May 2007.

[25] S. Chen, Y. Cao, Y. Kang, P. Li, and B. Sun, ‘‘Deep feature representation
based imitation learning for autonomous helicopter aerobatics,’’ IEEE
Trans. Artif. Intell., vol. 2, no. 5, pp. 437–446, Oct. 2021.

[26] H. Baomar and P. J. Bentley, ‘‘An intelligent autopilot system that learns
piloting skills from human pilots by imitation,’’ in Proc. Int. Conf.
Unmanned Aircr. Syst. (ICUAS), Jun. 2016, pp. 1023–1031.

[27] V. Sandström, L. Luotsinen, and D. Oskarsson, ‘‘Fighter pilot behavior
cloning,’’ in Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), Jun. 2022,
pp. 686–695, doi: 10.1109/ICUAS54217.2022.9836131.

[28] D. Shukla, S. Keshmiri, and N. Beckage, ‘‘Imitation learning for neural
network autopilot in fixed-wing unmanned aerial systems,’’ in Proc.
Int. Conf. Unmanned Aircr. Syst. (ICUAS), Athens, Greece, Sep. 2020,
pp. 1508–1517, doi: 10.1109/ICUAS48674.2020.9213850.

[29] P. Gorton, M. Asprusten, and K. Brathen, ‘‘Imitation learning for
modelling air combat Behaviour—An exploratory study,’’ Norwe-
gian Defence Res. Establishment (FFI), Kjeller, Norway, 22/02423,
Jan. 2023. [Online]. Available: https://ffi-publikasjoner.archive.knowl
edgearc.net/handle/20.500.12242/3136

[30] M. Schadd, N. de Reus, S. Uilkema, and J. Voogd, ‘‘Data-driven
behavioural modelling for military applications,’’ J. Defence Secur.
Technol., vol. 4, no. 1, pp. 12–36, Jan. 2022. [Online]. Available: https://
www.jdst.eu/publications/data-driven-behavioural-modelling-military-ap
plications

[31] H. Yao, Z. Song, B. Chen, and L. Liu, ‘‘ControlVAE: Model-
based learning of generative controllers for physics-based characters,’’
ACM Trans. Graph., vol. 41, no. 6, pp. 1–16, Nov. 2022, doi:
10.1145/3550454.3555434.

[32] Y. Liu, Y. Zeng, Y. Chen, J. Tang, and Y. Pan, ‘‘Self-improving generative
adversarial reinforcement learning,’’ in Proc. 18th Int. Conf. Auto. Agents
MultiAgent Syst., May 2019, pp. 52–60.

[33] I. H. Rather and S. Kumar, ‘‘Generative adversarial network based syn-
thetic data training model for lightweight convolutional neural networks,’’
Multimedia Tools Appl., vol. 83, no. 2, pp. 6249–6271, May 2023, doi:
10.1007/s11042-023-15747-6.

81216 VOLUME 13, 2025

http://dx.doi.org/10.1145/3054912
http://dx.doi.org/10.1007/978-981-16-9492-9_205
http://dx.doi.org/10.1145/3573900.3593631
http://dx.doi.org/10.2514/6.2021-0526
http://dx.doi.org/10.1109/ICCAR57134.2023.10151765
http://dx.doi.org/10.23919/ccc58697.2023.10240373
http://dx.doi.org/10.1117/12.141754
http://dx.doi.org/10.1109/ACCESS.2025.3563811
http://dx.doi.org/10.1177/15485129241309675
http://dx.doi.org/10.1177/15485129241309675
http://dx.doi.org/10.1109/ICUAS54217.2022.9836131
http://dx.doi.org/10.1109/ICUAS48674.2020.9213850
http://dx.doi.org/10.1145/3550454.3555434
http://dx.doi.org/10.1007/s11042-023-15747-6


J. P. A. Dantas et al.: Autonomous Aircraft Tactical Pop-Up Attack Using Imitation and Generative Learning

[34] N. Premakumara, B. Jalaian, N. Suri, and H. Samani, ‘‘Improving object
detection robustness against natural perturbations through synthetic data
augmentation,’’ in Proc. Asia Conf. Comput. Vis., Image Process. Pattern
Recognit. New York, NY, USA: Association for Computing Machinery,
Apr. 2023, pp. 1–6, doi: 10.1145/3596286.3596293.

[35] L. F. Weyland, M. P. D. Schadd, and H. C. Henderson, ‘‘Exploring
the fidelity of synthetic data for decision support systems in military
applications,’’ in Proc. Int. Conf. Mil. Commun. Inf. Syst. (ICMCIS).
Koblenz, Germany: IEEE, Apr. 2024, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/document/10540934

[36] J. P. A. Dantas, A. N. Costa, F. L. L. Medeiros, D. Geraldo,
M. R. O. A. Maximo, and T. Yoneyama, ‘‘Supervised machine learning for
effective missile launch based on beyond visual range air combat simula-
tions,’’ in Proc. Winter Simul. Conf. (WSC), Dec. 2022, pp. 1990–2001.

[37] J. F. Petersen, M. R. C. Aquino, and R. N. Salles, ‘‘Plataforma
AEROGRAF: Um SIG voltado para a Força Aérea,’’ Spectrum, Revista
do Comando-Geral de Operações Aéreas, vol. 1, no. 11, pp. 26–28, Sep.
2008.

[38] J. P. A. Dantas, A. N. Costa, V. C. F. Gomes, A. R. Kuroswiski,
F. L. L. Medeiros, and D. Geraldo, ‘‘ASA: A simulation environment for
evaluating military operational scenarios,’’ 2022, arXiv:2207.12084.

[39] J. P. A. Dantas, D. Geraldo, A. N. Costa, M. R. O. A. Maximo, and
T. Yoneyama, ‘‘ASA-SimaaS: Advancing digital transformation through
simulation services in the Brazilian air force,’’ in Proc. Simpósio de Apli-
cações Operacionais em Áreas de Defesa, Sep. 2023, p. 6. [Online]. Avail-
able: https://www.sige.ita.br/edicoes-anteriores/2023/st/235455_1.pdf

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

[41] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. 12th USENIX Symp. Operating Syst. Design Implement.,
Nov. 2016, pp. 265–283.

[42] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[43] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP). Doha,
Qatar: Association for Computational Linguistics, 2014, pp. 1724–1734.
[Online]. Available: https://aclanthology.org/D14-1179

[44] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent. (ICLR). San Diego, CA, USA: ICLR,
Dec. 2014, pp. 1–23.

[45] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter opti-
mization,’’ J. Mach. Learn. Res., vol. 13, no. 1, pp. 281–305, Mar. 2012.
[Online]. Available: http://jmlr.org/papers/v13/bergstra12a.html

[46] Y. Yu, Y. Zhu, S. Li, and D. Wan, ‘‘Time series outlier detec-
tion based on sliding window prediction,’’ Math. Problems Eng.,
vol. 2014, no. 1, Jan. 2014, Art. no. 879736. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1155/2014/879736

[47] H. Hota, R. Handa, and A. Shrivas, ‘‘Time series data prediction
using sliding window based RBF neural network,’’ Int. J. Comput.
Intell. Res., vol. 13, no. 5, pp. 1145–1156, 2017. [Online]. Available:
https://www.ripublication.com/ijcir17/ijcirv13n5_46.pdf

[48] A. Y. Ng, ‘‘Feature selection, L1 vs. L2 regularization, and rotational
invariance,’’ in Proc. 21st Int. Conf. Mach. Learn. (ICML). New York,
NY, USA: Association for Computing Machinery, 2004, p. 78, doi:
10.1145/1015330.1015435.

[49] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
Jan. 2014.

[50] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[51] J. Ho and S. Ermon, ‘‘Generative adversarial imitation learning,’’ in Proc.
30th Int. Conf. Neural Inf. Process. Syst. Red Hook, NY, USA: Curran
Associates Inc., Jan. 2016, pp. 4572–4580.

[52] L. Chen, K. Lü, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch, ‘‘Decision transformer: Reinforcement
learning via sequence modeling,’’ in Proc. 35th Int. Conf. Neural Inf.
Process. Syst. Red Hook, NY, USA: Curran Associates Inc., Jan. 2021,
pp. 1–23.

[53] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
‘‘Overcoming exploration in reinforcement learningwith demonstrations,’’
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 6292–6299,
doi: 10.1109/ICRA.2018.8463162.

JOAO P. A. DANTAS received the B.Sc. degree
in mechanical-aeronautical engineering from the
Aeronautics Institute of Technology (ITA), Brazil,
in 2015, and the M.Sc. degree from the Graduate
Program in Electronic and Computer Engineering,
ITA, in 2019, where he is currently pursuing
the Ph.D. degree with the Graduate Program in
Electronic and Computer Engineering. During this
time, he participated in a year-long exchange
program with Stony Brook University (SBU),

USA. In 2022, he was a Visiting Researcher with AirLab, Robotics Institute,
Carnegie Mellon University. He is currently a Researcher for Brazilian Air
Force with the Institute for Advanced Studies (IEAv). His research interests
include artificial intelligence, machine learning, robotics, and simulation.

MARCOS R. O. A. MAXIMO received the
B.Sc. degree (summa cum laude) in computer
engineering and the M.Sc. and Ph.D. degrees
in electronic and computer engineering from the
Aeronautics Institute of Technology (ITA), Brazil,
in 2012, 2015, and 2017, respectively. He is
currently a Professor with ITA, where he is also
a member of the Autonomous Computational
Systems Laboratory (LAB-SCA) and leads the
Robotics Competition Team: ITAndroids. His

research interests include humanoid robotics, mobile robotics, dynamical
systems control, and artificial intelligence.

TAKASHI YONEYAMA received the bachelor’s
degree in electronic engineering from the Aero-
nautics Institute of Technology (ITA), Sao Jose
dos Campos, Brazil, in 1975, the Ph.D. degree in
electrical engineering from the Imperial College
London, London, U.K., in 1983, and the M.D.
degree in medicine from Taubate University,
Taubate, Brazil, in 1993. He is currently a
Professor in control theory with the Department of
Electronics, ITA. He has more than 300 published

articles, has written four books, and supervised more than 70 theses. His
research interest includes stochastic optimal control theory. He was the
President of Brazilian Automatics Society, from 2004 to 2006.

VOLUME 13, 2025 81217

http://dx.doi.org/10.1145/3596286.3596293
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/1015330.1015435
http://dx.doi.org/10.1109/ICRA.2018.8463162

