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ABSTRACT This work explores Beyond Visual Range (BVR) air combat simulations, focusing on two-
versus-two scenarios involving autonomous agents. The engagement phase in BVR combat presents complex
and unpredictable situations, as it is difficult to anticipate the behavior of opposing aircraft and the
outcomes of tactical decisions, especially in multi-agent settings. A promising approach is the use of Deep
Reinforcement Learning (DRL), which enables agents to learn from dynamic environments. According
to fighter pilots, collective situational awareness, defined as understanding the spatial distribution and
orientation of allies and opponents, is essential for executing coordinated tactical maneuvers. The main
contribution of this work is AsaGym, a library for developing and training DRL-based fighter agents in
BVR scenarios. A case study demonstrates its use, applying a reward function that promotes coordination
based on collective situational awareness, and compares different DRL algorithms to assess their ability to
foster cooperative behavior. The results highlight DRL’s potential to address the complexities of modern air
combat and support the development of more adaptive and effective tactics in multi-agent BVR scenarios.

INDEX TERMS Artificial intelligence, autonomous agents, beyond visual range air combat, deep
reinforcement learning, simulation.

I. INTRODUCTION

Air combat is a complex and dynamic scenario where skilled
pilots make quick decisions to gain a tactical advantage over
their opponents [1]. Beyond Visual Range (BVR) air combat,
in particular, involves engagements taking place at distances
where pilots cannot see the enemy aircraft [2], [3]. While
some air combat still occurs within visual range (WVR),
most engagements start in BVR. This phase is often the most
important, as it can give advantages or create difficulties for
the later stages of combat. The main challenge for pilots is
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the planning of maneuvers, which shows their ability to think
tactically and decide the outcome of the fight [4].

Computer simulations of BVR air combat can recreate
many different situations, helping to test new tactics, sensors,
and weapons [5]. One of the hardest parts of these simulations
is mimicking the complex behaviors of pilots during all
stages of combat. These decisions include adapting to new
situations, coordinating with allies to execute strategies, and
timing missile launches effectively.

This work explores the learning of BVR engagement
maneuvers by autonomous agents. Engagement involves
maneuvering the aircraft to gain an advantage over the
opponent, that is, to position the enemy within the effective
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range of the aircraft’s own missiles, known as the Weapon
Engagement Zone (WEZ), while staying outside the oppo-
nent’s WEZ [6], [7]. The engagement stage becomes even
more complex when there is more than one opponent.

A promising solution to this problem is the use of
Reinforcement Learning (RL), which allows autonomous
agents to learn from challenging experiences. RL is a machine
learning method in which an autonomous agent learns to
make better decisions by interacting with its environment.
The agent receives rewards or penalties for its actions and
adjusts its strategy to maximize the rewards over time [8].
Deep Reinforcement Learning (DRL) is a more advanced
form of RL that uses deep neural networks to manage
complex environments, enabling agents to make decisions
in dynamic and uncertain conditions, such as BVR air
combat [9].

In this context, existing simulation environments for air
combat often lack modularity, support for multi-agent DRL
experimentation, or mechanisms to incorporate operational
insights such as spatial coordination between allied and
enemy aircraft.

Therefore, the main contribution of this work is:

o Development of AsaGym, a library for simulating and
training DRL-based autonomous fighter agents in BVR
air combat, with a case study demonstrating its use
with a reward design that promotes coordination and
situational awareness.

In addition,
contributions:

we provide the following specific

o Design of a task-oriented reward function that encour-
ages cooperative agent behavior based on spatial rela-
tionships among allies and opponents.

« Incorporation of operational knowledge from Brazilian
Air Force (FAB) fighter pilots, serving as Subject Matter
Experts (SMEs), who emphasized the importance of
spatial awareness for coordinated maneuvers in BVR
combat.

o Comparative evaluation of four state-of-the-art DRL
algorithms — Proximal Policy Optimization (PPO), Soft
Actor-Critic (SAC), Twin Delayed Deep Deterministic
policy gradient (TD3), and Advantage Actor-Critic
(A2C) — applied to the engagement phase in a simulated
BVR air combat scenario.

The remainder of this work is organized as follows.
Section II presents an overview of related work, highlighting
previous research on DRL applications in BVR air combat
simulations. Section III details the proposed methodology,
including the design of the DRL models used to represent
the engagement phase of BVR combat, and the experimental
setup used for training and evaluation. The results and
analysis of the conducted experiments are discussed in
Section IV, providing insights into the agent’s performance
across different scenarios. Finally, Section V summarizes the
key findings and outlines potential directions for future work.
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Il. RELATED WORK

RL has been widely used to model the engagement stage
in constructive BVR air combat simulations. Most studies
employ two types of rewards: intermediate and final. The
intermediate reward is provided during training whenever
the agent makes a decision, reflecting its current tactical
advantage or disadvantage relative to opponents. The final
reward is assigned at the end of the training episode, often
based on the difference between the number of surviving
friendly and opposing agents. A positive value indicates
a favorable outcome, while a negative value indicates an
unfavorable one. In this context, a group of multiple aircraft
is referred to as a swarm.

This section focuses on behavior modeling with DRL,
particularly in terms of reward design; for a more detailed
review of simulation frameworks, we refer the reader to [10].
A review of references that applied RL to model BVR air
combat behaviors is summarized in Table 1. The second
column indicates the BVR air combat setup, such as one-
versus-one (1vl), two-versus-two (2v2), or n-versus-one
(nv1). The third column lists the RL methods used in each
study. The fourth and fifth columns indicate whether the
works employed functions to compute intermediate and final
rewards, respectively.

In [11], an intermediate reward function was used based
on angles between the aircraft, the distance relative to the
WEZ, radar range from one aircraft’s perspective, and altitude
differences.

In [12], an intermediate reward considered angles between
the aircraft, altitude relative to a safe threshold, and speed
in relation to the minimum required to avoid a stall. The
final reward penalized the agent if it was eliminated by the
opponent at the end of the episode.

Reference [13] proposed an intermediate reward that
assigned positive or negative values based on events such
as missile launches, stall situations, radar tracking (both
active and passive), missile warnings, and evasion maneuvers.
The final reward reflected outcomes like eliminating the
opponent, being eliminated, collisions, and victory or defeat
conditions.

In [4], an intermediate reward function was employed,
considering factors such as the distance from the simulation
boundaries, angles and distances between the aircraft, and the
likelihood of eliminating the opponent or being eliminated.

Reference [14] proposed a final reward function focused
solely on the final outcome, calculated as the difference in the
number of surviving aircraft between the opposing swarms.

The study presented in [15] employed an intermediate
reward function based on the angles and distances between
the aircraft.

In [16], the authors introduced a two-stage maneuver
control system: the first stage focused on swarm control,
using metrics such as separation distance (for dispersion)
and grouping distance (for cohesion); while the second
stage handled engagement using reinforcement learning.
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TABLE 1. Review of references that applied RL to model BVR air combat behaviors.

Reference Air Combat Setup RL Methods Intermediate Rewards Final Rewards
[11] vl Improved Q-Network (IQN) v
[12] vl D3 v v
[13] 1vl Key Air Combat Event Reward Shaping (KAERS) and PPO v v
[4] 1vl Long Short-Term Memory (LSTM) and Deep Q-Network (DQN) v
[14] 6v6 Neuroevolution-based Simulation Optimization (NSO) v
[15] 1vl Double Deep Q-Network (DDQN) v
[16] nvl Deep Deterministic Policy Gradient (DDPG) v
[17] 2vl DQN v v
[18] vl Generative Adversarial Imitation Leaming (GAIL) and Multi-Agent v
Deep Deterministic Policy Gradients (MADDPG)
[19] 1vl SAC and Parallel Self-Play (PSP) v
[20] 4v4 Deep Relationship Graph Reinforcement Learning (DRGRL) v v
[21] 2vl Multi-Agent Proximal Policy Optimization (MAPPO) v v
[22] 1vl Monte Carlo Tree Search (MCTS) and Deep Neural Network (DNN) v
[23] 1vl Asynchronous Advantage Actor-Critic (A3C) v v
[24] vl PPO v v
[25] vl Dueling Double Deep Q-Network (D3QN) v v
[26] vl Expert-Soft Actor-Critic (E-SAC) v
271 Tvi PPO v
Advantage Highlight Multi-Agent Proximal Policy Optimization
(28] 2 se e (AHI%/[APPO) P v
Three-level Hierarchical decision framework embedding Expert
(291 vl knowledge (H3E) v v
[30] vl Self-play DRL v v

Although the scenario involved a swarm versus a single
opponent, the intermediate reward function evaluated each
agent individually based on distances and angles relative to
the opponent.

In [17], the intermediate reward was based on angles and
distances between the agent and the opponent. The final
reward assigned a positive value if the agent eliminated the
opponent and a negative value (penalty) if the agent was
eliminated.

The intermediate reward proposed in [18] considered
factors like angles, altitude differences, and speed variations
between the agent and the opponent.

In [19], the intermediate reward function was based on
angles and distances between the agent and the opponent.

The intermediate reward function proposed in [20] consid-
ered events such as radar tracking (active and passive), missile
firing, and missile evasion. The final reward was defined as
the difference between the number of surviving allies and
opponents at the end of the episode.

Similar to other swarm-based studies, the intermediate
reward function proposed in [21] considered angles, dis-
tances, speed, and altitude differences relative to the oppo-
nent. The final reward reflected events such as successful
tracking, missile engagements, and elimination outcomes.

In [22], the final reward function assigned a value of 1 if
the agent eliminated the opponent without being eliminated,
—1 if the agent was eliminated, and O in the case of no
eliminations or mutual elimination.

In [23], the authors designed an intermediate reward
considering altitude, speed, distance, and angles between the
agent and the opponent. The final reward assigned positive
values for successful eliminations and negative values for
defeats or ties.
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Both intermediate and final rewards were explored in [24].
The intermediate reward considered missile launches, angle
relations, distances, and altitude differences, while the final
reward assigned positive values for victories and negative
values for defeats.

Reference [25] applied a reward function that combined
an intermediate reward, focused on distances and angles
between the agent and the opponent, and a final reward, with
positive values for eliminating the opponent, negative values
for being eliminated, and zero for ties.

The intermediate reward function used in [26] was based
on angles and distances between the agent and the opponent.

DRL was specifically applied in [27] to model defensive
maneuvers against incoming missiles in 1vl BVR air combat.
The reward was based on the effectiveness of defensive
actions, assigning positive values for successful evasion
(based on the distance from the missile) and zero if the agent
was hit.

A sparse intermediate reward function was employed
in [28] based on events like radar tracking and missile
launches by individual aircraft. However, it did not account
for the spatial distribution or formation orientation of aircraft
within the swarms.

In [29], intermediate reward was used for actions such as
missile firing, radar tracking, evading enemy tracking, and
missile avoidance. The final reward assigned a value of 1 for
eliminating the opponent or surviving a specific duration and
—1 if the agent was eliminated.

Reference [30] employed an intermediate reward function
based on missile usage, distances, angles, and altitude
differences. The final reward considered missile effective-
ness, collision events, boundary violations, and navigation
performance.
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lll. METHODOLOGY

This section presents the methodology for developing and
evaluating our RL environment and agents, focusing on
the AsaGym library, which supports fighter agent training
in air combat scenarios within the Aerospace Simulation
Environment (ASA) framework [31], [32]. It covers the
integration of key modules, the design of observation and
action spaces, the implementation of the reward function,
and episode termination criteria. Additionally, it presents
the scenario configurations, initialization sampling methods,
and custom wrappers that enhance training flexibility. The
methodology also includes rendering methods for validation
and debugging, the training setup with selected algorithms
and hyperparameters, and the computational infrastructure.
Finally, evaluation metrics are introduced to determine the
most effective algorithm choices based on performance
indicators such as episode rewards, episode lengths, and total
training time.

A. ASAGYM

The AsaGym computational library is essential to our
methodology, providing a custom environment built on top
of the Gymnasium framework specifically for training fighter
agents using DRL. This subsection details the development
and integration of AsaGym within ASA. AsaGym extends
the capabilities of Gymnasium by introducing specialized
modules that facilitate the training of Artificial Intelligence
(AI) agents in complex air combat scenarios.

1) LIBRARY DEVELOPMENT

The open-source Python module Gymnasium [33] has
emerged as a significant tool for RL researchers, replacing
the widely used OpenAl Gym [34]. Gymnasium builds
upon the foundation laid by OpenAl Gym, offering a
robust and flexible framework for developing and comparing
RL algorithms.

Gymnasium provides a comprehensive set of pre-built
environments that are fully compatible with its API [33].
These environments cover a wide range of RL tasks,
from classic control problems to more complex scenarios
involving robotics, games, and simulations [34]. By stan-
dardizing the interface for these environments, Gymnasium
ensures that researchers can seamlessly switch between
different tasks without needing to modify their underlying
RL algorithms [33].

One of the key advantages of Gymnasium is its ability
to streamline the development process of RL algorithms.
Researchers can leverage the pre-built environments to
quickly test and refine their algorithms, focusing on
improving performance and exploring new techniques.
This modularity and ease of use significantly reduce the
overhead associated with setting up and managing different
RL tasks [33].

A Python package for the ASA framework, the AsaGym,
was created to employ RL training for fighter agents. This
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package includes a subclass of the Gymnasium environment
class to facilitate the training of new AI agents with RL.
The library also offers unique wrappers to help in training
setup configuration and methods for registering special
environments to be recognized by the Gymnasium.

We utilize the Stable-Baselines3 Python module, a col-
lection of RL algorithm implementations with a common
interface, to test and verify the AsaGym library. These
algorithms adhere to a standardized structure, using a
unified interface that includes functions such as train,
save, load, and predict [35]. Each algorithm has
its limitations, especially regarding support for discrete or
continuous action spaces. Additionally, the Stable-Baselines3
package provides the capability to multiprocess multiple
separate contexts into a single environment, accelerating the
training process for supported algorithms.

2) MODULES INTEGRATION

This work aims to use the ASA framework modules
previously created in the background to construct a Python
package that subclasses the Gymnasium main class. The
modules utilized will be the Tacview recorder for rendering
the environment, a specific AsaNode for processing the
simulation steps and interacting with AsaGym, and the
dynamically loaded models.

The set of BVR air combat behaviors of a fighter agent
in the ASA framework is modeled through a Behavior
Tree (BT). A simplified version of the fighter’s BT is
presented in Figure 1. BT is a formal language for the
graphical and hierarchical representation of logical processes,
i.e., behaviors [36]. Fighter’s BT is composed of six main
branchs: five subtrees that handle collision situations, threat
reactions (break, crank, etc), situations to return to base
(bingo fuel, damage, etc), combat air patrol, and navigation
in formation; and a branch that handles three specific
BVR phases: engagement; missile shooting; and missile
supporting. The condition node of this branch checks whether
the autonomous agent has a target, which is a requirement for
the activation of one of the three mentioned phases. A detailed
description of the engagement phase can be found in [37].
It is important to mention that subtrees encapsulate complex
behaviors composed of a combination of many other nodes.
Due to the large size of the fighter’s behavior tree, subtrees
were used to make this tree easier to visualize in the article.

Initially, the engagement node of the fighter’s BT was
modified to respond to commands from an external software
component rather than execute a predefined function. The
goal is to train a specific behavior of the flying agent to locate
a suitable spot to take a shot in a BVR conflict, as discussed in
the following section. All other behaviors will still be dictated
by the BT nodes already implemented. An ASA extension,
the External Processor, was created to properly handle
Input/Output (I0) messages. It initiates a high-performance
asynchronous communication socket called ZeroMQ (ZMQ)
and uses it to convey messages serialized using the Protobuf
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Support Missile Shoot Missile Engagement

FIGURE 1. Simplified BT of the fighter agent.

library [38]. We customized the AsaNode with an RL
server capable of answering many queries required by the
Gymnasium Application Programming Interface (API). This
server established a second ZMQ connection, which AsaGym
will connect to for message exchange with our package.
Additionally, the RL server starts, resets, and ends the node’s
execution.

3) COMMUNICATION AND SEQUENCE DIAGRAM

The communication between the AsaGym library and the
related objects is depicted in a Unified Modeling Language
(UML) sequence diagram for the st ep method in Figure 2.
This diagram visually represents the interactions and message
flow between the various components involved in the RL
training process. In the diagram, closed arrowheads imply
synchronous messages, indicating that the sender waits for
a response before proceeding. In contrast, open arrowheads
denote asynchronous messages, where the sender continues
its process without waiting for a response.

Dashed lines in the diagram represent responses, illustrat-
ing the return flow of information from the receiver back to
the sender. Filled lines indicate method calls, showing the
initiation of actions or data transfers between components.
The specific methods used to write and read at the ZMQ
connection are zmg_send and zmg_recv, respectively.
These methods facilitate high-performance communication
by efficiently managing the transmission and reception of
serialized messages within the network.
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Using the same concept, message-exchanging mechanisms
for setting up, clearing, and shutting down the environment
were implemented. These mechanisms ensure seamless RL
training session initialization, maintenance, and termination.

As presented in Figure 3, the engagement node of the
BT communicates cyclically with a DRL model in AsaGym
via the External Processor. The engagement node sends the
agent’s state to the DRL model, which processes this state to
generate an observation. This observation serves as the input
to the deep neural network of the DRL model, which then
estimates an action. The estimated action is sent back to the
engagement node, which executes it through the fighter agent.
After performing the action, the agent reaches a new state that
is sent back to the DRL model, where it is processed into a
new observation.

If the new state benefits the agent, a positive reward is
assigned. If the state is unfavorable, a negative reward is
given. During training, the RL model adjusts the weights of
its neural network based on these rewards, refining its policy
to maximize future rewards. A detailed explanation of state,
observation, action, and reward is given in this section.

B. SCENARIO DESCRIPTION

In this study, we consider simulations of three-dimensional
BVR air combat scenarios. Each fighter agent is a compu-
tational model of the F-16 aircraft in the ASA framework,
and is equipped with: datalink; six active BVR missiles with
seekers; a radar; and a Radar Warning Receiver (RWR) [10].

VOLUME 13, 2025
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FIGURE 2. UML sequence diagram illustrating the messaging interactions in the step method of the AsaGym library using ZMQ for

high-performance communication.
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Algorithm
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RL Model in the AsaGym

Each fighter agent has a BT that emulates BVR air combat
behaviors. The training of the DRL model involves engaging
a team of two fighters against an opposing team of two
aircraft in BVR air combat. In this type of combat, pilots
must position themselves strategically to gain an offensive
advantage while avoiding enemy tracking [39].

This study explores a more complex multi-agent environ-
ment by introducing 2v2 BVR air combat. In this scenario,
two allied aircraft engage two enemy aircraft, requiring
coordination and teamwork to achieve tactical objectives.

Two distinct setups are considered, as illustrated in
Figure 4. In Setup 1, the blue team consists of two agents:
the Blue Leader, whose engagement node is controlled by
a DRL model, and the Blue Wingman, whose engagement
node follows engagement rules based on operational expert
knowledge. They face an opposing red team composed of
two enemies, both of which use engagement rules identical
to those controlling the Blue Wingman. This setup challenges
the Blue Leader to coordinate with its wingman to effectively
engage a reactive opponent.

In Setup 2, both blue team agents, Blue Leader and Blue
Wingman, have engagement nodes controlled by the same
DRL model. Each agent has its own state, but receives
a shared observation (collective situational awareness) that
includes information about both allies and opponents. This
setup allows the use of a single shared policy while providing
each agent with a collective view of the scenario. It supports
the learning of cooperative behavior and helps evaluate how a
unified policy improves team coordination and performance
against the red team. Each fighter agent of the red team
follows the same engagement rules as in the first setup.

By expanding the scenario to include multi-agent interac-
tions, this study enhances the robustness and versatility of the
models, preparing them for combat situations. In both setups,

FIGURE 3. RL model in AsaGym integrated with the fighter's BT in ASA,
showing the interactions between situational awareness, the reward
function, and decision-making processes.
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Red Leader (BT)

Red Wingman (BT) . \

e

Blue Leader (RL)

Blue Wingman (BT or RL)

h&

FIGURE 4. Diagram illustrating the positions and roles of the Blue and Red teams in the exercise. In Setup 1, the Blue Leader has an engagement node
controlled by a DRL model, while the Blue Wingman has an engagement node controlled by engagement rules. In Setup 2, both the Blue Leader and Blue
Wingman have engagement nodes controlled by a single DRL model. Each team is responsible for defending a common point of interest and is equipped

with ground radar to enhance enemy detection.

TABLE 2. State and observation components for blue and red teams.

Category Subcategory

Components

Blue Leader
Blue Wingman
Red Leader
Red Wingman

State

Latitude, Longitude, Altitude, Heading, and Airspeed

(Blue Leader , Red Leader)
(Blue Leader , Red Wingman)
(Blue Wingman , Red Leader)

(Blue Wingman , Red Wingman)
(Blue Leader , Blue Wingman)

Observation

Magnitude Difference of Relative Azimuths, Slant Distance, Airspeed Difference

each team is tasked with defending a point of interest and is
equipped with ground radar to improve enemy detection.

C. LEARNING FRAMEWORK

This subsection describes the learning framework adopted in
this study. It is organized into three parts: the observation
space provided to the agents, the set of available actions, and
the reward function designed to guide the learning process.

1) OBSERVATION

Observation is the input of the artificial neural network
of the DRL model, as we can verify in Figure 3. In this
work, observation is the collective situational awareness
between the Blue and Red teams, as summarized in Table 2.
This collective situational awareness is obtained through the
processing of the estimated state of each agent.

The use of such collective situational awareness, which
is based on angular relations, slant distances and airspeed
differences, plays an important role in training the DRL
model. It makes the DRL model invariant to the specifications
of positions and velocities. To enhance the learning process,
all observations are normalized within predefined ranges,
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as this is a common practice in RL training that helps improve
training efficiency and convergence.

2) ACTION

The action is designed to capture essential flight control
elements, allowing the agent to maneuver effectively during
BVR engagements. It includes key flight parameters that
influence combat performance, such as heading and air-
speed. Unlike real-world pilots, who have full control over
their aircraft, RL algorithms often benefit from a simplified
action structure. In the ASA framework, the actions do not
represent direct control commands for the aircraft but rather
a desired attitude that the system aims to achieve.

The elements included in the action are:

o Heading: The direction in which the aircraft’s nose
is pointing, expressed in degrees, ranging from —180
to 180.

o Airspeed: The aircraft’s speed along its flight path.

The action is structured as a dictionary, where each action
parameter is represented as a constrained continuous value.
The heading action allows for full directional control, while
the airspeed action lets the agent adjust velocity to optimize
engagement strategies. The decision to use a continuous

VOLUME 13, 2025
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action space improves maneuver precision compared to
discrete alternatives. This setup enables the agent to explore
a broader range of tactical options and adapt more effectively
to different combat scenarios.

3) REWARD

Before defining the reward function used in this study,
we conducted preliminary tests with alternative formulations
inspired by existing literature. These initial experiments
focused on individualistic reward strategies, such as encour-
aging agents to minimize their distance to opponents or
maximize angular advantage individually. However, such
strategies often resulted in undesired behaviors, including
agents pursuing conflicting goals, clustering in suboptimal
areas, or failing to coordinate effectively with teammates.
These observations motivated the adoption of a shared
reward formulation that promotes collective behaviors and
situational awareness across the team.

The proposed reward function is designed to encourage
agents to adopt collectively advantageous tactical behaviors
in BVR air combat. The definitions of advantageous and
disadvantageous situations in BVR scenarios were informed
by the experience of fighter pilots.

To achieve these behaviors, we propose a reward function
that incorporates collective situational awareness among
agents on both the Blue and Red teams. Specifically, the
reward is composed of two primary components: Relative
Azimuth Reward and Velocity Reward. Each of these
components is designed to promote different aspects of
engagement strategy, as detailed below.

a: RELATIVE AZIMUTH REWARD

The idea behind this metric comes from a fundamental
aspect of air combat: a pilot always tries to keep their
aircraft pointed in a tactically favorable direction relative
to the enemy. In practice, this means constantly adjusting
position and heading to face the opponent, making it easier
to react, pursue, or defend. This reward is important for
achieving favorable positioning, as maintaining alignment
with the target enhances maneuverability and increases the
effectiveness of weapon deployment.

It evaluates the angular alignment between the agents of
both teams by considering their relative azimuth values. The
relative azimuth of an agent is calculated as the difference
between the bearing to the target and its own heading. Since
each agent has its own frame of reference, the relative azimuth
from the perspective of one agent may differ from that
of the opposing agent. The reward function is designed to
minimize differences in orientation between allied and enemy
agents, encouraging the Blue team to maintain an optimal
orientation toward the Red team. The calculated values are
normalized using the maximum allowed azimuth difference
to ensure they fall within the range [—1.0, 1.0]. This reward is
important for achieving favorable positioning, as maintaining
alignment with the target enhances maneuverability and
increases the effectiveness of weapon deployment. The
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relative azimuth reward is defined by:

5 IR |ra(Rj, Bi)‘ - |m(Bi’Rj)|

reward,; = Z Z

i=1 j=1

ey

NBNR I'max

where np and ng are the number of agents of the Blue
and Red teams, respectively; By represents the Blue Leader;
By represents the Blue Wingman; R; represents the Red
Leader; R, represents the Red Wingman; ra(A,B) €
[—180°, 180°] represents the relative azimuth (in degrees) of
agent A to agent B, which is computed as:

ra(A, B) = bearing(B — A) — heading(A) 2)

where ramax = 180° is the maximum value of the relative
azimuth.

b: VELOCITY REWARD

This metric is inspired by how pilots control their speed
in relation to an enemy during an engagement. In a real
combat scenario, a pilot needs to approach the opponent at
a speed that allows for effective action but also keeps a safe
and manageable distance. If the agent stays too far, it risks
losing the advantage; if it gets too close too quickly, it may
compromise safety or tactical position. This component
ensures that the agent does not remain too far from the target,
which could compromise combat effectiveness.

Let B; be an agent of the Blue team and R; the nearest
agent of the Red team in relation to B;. Let v(B;) and
V(R;) denote the airspeeds of B; and R;, respectively, where
airspeed is a scalar representing the magnitude of the agent’s
velocity. The velocity factor F\,(B;, R)) is computed based
on the airspeeds of these agents, and dvmyax 1S the maximum
allowed velocity difference. The velocity reward encourages
a single agent to close the distance with the nearest target
while maintaining a tactically safe range. It is calculated
based on the slant distance between the agent and the target,
which is derived from their respective positions and altitudes.
The reward is normalized to fall within the range [0.0, 1.0],
with higher values awarded for shorter distances within an
acceptable operational envelope. This component ensures
that the agent does not remain too far from the target, which
could compromise combat effectiveness. The velocity reward
is defined by:

ng /
F,(B;, R:
WWMZZJQ4MMMMPW@ﬂMJ$
im np rdmax
which applies only if:
ra(R., B))| — |ra(B;, R’
[ra(R;, B;)| — |ra(B; ,)|>0'0’ @
Tdmax
otherwise:
reward, = 0. (@)
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The velocity factor F)(B;, R;) is given by:

0, if Av <0
F,Bi,R)=11, ifAv>1 (6)
Av, otherwise
where:
d — (v(B;) — v(R,
Av=1— Vmax — (V(Bi) — w( ,)) %

dVimax
The total reward is computed as the sum of the normalized
relative azimuth reward and velocity reward, ensuring a
balanced evaluation of both positioning and engagement
distance. The reward function dynamically adapts to the
scenario by accounting for real-time changes in the relative
positions and headings of the agents and targets.

D. INITIALIZATION SAMPLING

The scenario setup defines the initial conditions for both
friendly and enemy agents, allowing for variability in
positioning and airspeed. The initialization process is imple-
mented through a custom function, which sets the starting
parameters for the agents based on a fixed reference point.
The Red Leader serves as the reference for positioning
the Blue Leader. The initial latitude and longitude of the
Red Leader are fixed, with a constant heading of 180° and
airspeed of 450 knots.

The Blue Leader is always initialized directly in front of
the Red Leader, ensuring that the two agents start head-on.
The distance between them is randomly selected within a
range of 20 to 60 nautical miles. The Blue Leader’s airspeed
is assigned with a random value within [250,650] knots.

To determine the initial positions, the ground distance,
which is the horizontal separation between agents measured
along the Earth’s surface, and the bearing, which is the
direction from one agent to another measured in degrees
clockwise from true north, are used to compute the Blue
Leader’s latitude and longitude. The bearing is set to match
the Red Leader’s heading, ensuring that both agents are
aligned head-on, while the Blue Leader’s heading is fixed
at 0°. Both agents start the engagement at an altitude of
25,000 feet, simulating a realistic operational environment for
BVR air combat.

Once the initial state is set, the formation pattern for
the blue team is configured. In this formation pattern, the
Blue Wingman is positioned 180 degrees relative to the Blue
Leader at a distance of approximately 1.6 nautical miles. The
Blue Wingman is also assigned the same heading as the Blue
Leader. The Red Wingman is positioned alongside the Red
Leader, following a similar formation strategy. The complete
initialization sampling process is summarized in Algorithm 1.
A visualization of this initialization process is presented in
Figure 5.

E. EPISODE TERMINATION CRITERIA
The criteria for episode termination are important in training
agents in the 2v2 BVR air combat environment, as they
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Algorithm 1 Initialization Sampling for 2v2 BVR Air
Combat

1: Set fixed initial position, heading (180°), airspeed (450
knots), and altitude (25,000 feet) for Red Leader

2: Determine random distance from the Red Leader within
[20, 60] NM to set the Blue Leader’s position directly in
front

3: Compute the Blue Leader’s latitude and longitude using
geodesic calculations with bearing equal to the Red
Leader’s heading

4: Set the Blue Leader’s heading to a fixed value (0°)

5:  Assign the Blue Leader’s altitude as 25,000 feet

6: Assign the Blue Leader’s airspeed with a random value
within [250,650] knots.

7:  Set the Blue Wingman 180 degrees relative to Blue
Leader at a distance of 1.6 NM, maintaining the same
heading

8: Set the Red Wingman alongside the Red Leader in a
similar formation

9: Return the initial configuration with positions, headings,
airspeeds, and formation details

Red Wingman (BT)
heading = 180°
altitude = 25,000 feet
airspeed = 450 knots 1.6

nautical mile

Red Leader (BT)
heading = 180°
altitude = 25,000 feet
airspeed = 450 knots

distance € [20,60]
nautical miles

Blue Leader (RL)
heading = 0°

altitude = 25,000 feet
airspeed € [250, 650] knots J

| 1.6

Blue Wingman (BT or RL) I ——

heading = 0°
altitude = 25,000 feet
airspeed € [250, 650] knots

FIGURE 5. Visualization of the initialization sampling process.

facilitate the training of specific aspects of combat, such
as engagement scenarios, ensuring that engagements are
tactically meaningful.
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An episode ends when one of these conditions is met:

o Aircraft Elimination: The episode will conclude if
at least one aircraft from either the blue or red team
is eliminated. This condition ensures the integrity of
the combat scenario, as the elimination of an aircraft
would alter the dynamics of the engagement, effectively
making it no longer a 2v2 scenario.

o Priority-Based Termination Condition: An episode
will terminate if a BT node with a priority level greater
than the priority of the engagement node is activated.

By defining structured termination criteria, the training
environment ensures that each episode concludes with
meaningful tactical outcomes. These criteria not only provide
agents with well-defined objectives but also enable focused
evaluation of specific behaviors and decision-making pro-
cesses.

F. RENDERING METHODS

For validation and debugging purposes, visualizing the
evolution of the agent’s behavior is a key component of the
development process. A practical approach to achieve this is
through the use of the commercial software Tacview [40],
which provides 3D visualizations of air combat scenarios.
The ASA framework integrates seamlessly with Tacview
by exposing all model attributes to a local port, enabling
real-time rendering of the scenario. However, Tacview’s
streaming mode expects a continuous flow of temporal data,
whereas AsaGym resets the environment’s time at each
episode. This episodic reset creates time discontinuities that
Tacview cannot properly handle due to its serialized data
collection, preventing its direct use for real-time visualization
during training.

To address this limitation, each episode is saved as a
separate .acmi file, Tacview’s native format for record-
ings. This approach allows developers to review individual
episodes offline, enabling a detailed post-training analysis
of the agent’s behavior and decision-making. By storing
episodes in this manner, it becomes possible to thoroughly
examine specific maneuvers and engagement strategies
without interfering with the training process. The use of
Tacview extends beyond basic debugging by providing a
framework for performance evaluation. Its intuitive interface
and robust visualization tools make it an invaluable resource
for refining reinforcement learning models and ensuring that
agents are prepared for realistic air combat scenarios.

G. WRAPPERS

The Gymnasium documentation [33] states that wrappers
provide a simple and flexible way to modify existing
environments without changing the core code. In AsaGym,
wrappers keep the main environment intact while allowing
customization to meet the specific needs of air combat
training. This section explains the custom wrappers devel-
oped for the AsaGym library, expanding the features of the
Gymnasium framework.
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1) FLATTEN ACTION

The FlattenAction wrapper simplifies the multi-
dimensional action space of the environment by converting it
into a flat, continuous vector representation. This transforma-
tion helps the agent by reducing complexity while preserving
essential control information. The FlattenAction wrap-
per leverages the Act ionWrapper from the Gymnasium
framework to create a simplified interface for action
processing. This allows RL algorithms to output a vector
of continuous values, which the wrapper then maps to the
appropriate control inputs for the environment.

2) SKIP FRAME

A wrapper that maintains the same action for multiple
frames has been implemented to train a more stable agent
and emphasize the impact of each action. This technique
was first introduced by DQN [41] to improve learning
stability by reducing temporal aliasing and increasing the
effective action duration. It is particularly effective in
environments like AsaGym, where the ASA simulation
processes commands every 100 milliseconds. By skipping
frames, the wrapper ensures a stronger temporal influence
on actions by accumulating all intermediate rewards and
returning a cumulative reward at the end of the skipped frame
block. The returned observation reflects the most recent state
of the environment, ensuring accurate decision-making.

The SkipFrameWrapper takes a parameter defining
the number of frames to be skipped. In this work, we are
skipping 49 frames, which extends the interval between
action decisions to approximately 5 seconds. This duration
was chosen to prevent abrupt changes in actions at high
frequencies, allowing sufficient time for the agent to execute
a selected maneuver before making a new decision.

As previously described in Subsection III-C2, the actions
in AsaGym do not represent direct control commands for the
aircraft but rather a desired attitude that the system aims to
achieve. Because of this, the low sampling rate introduced
by the frame-skipping mechanism does not hinder control
precision. Instead, it allows the agent to focus on meaningful
tactical decisions rather than frequent low-level adjustments
as the system smoothly transitions toward the commanded
state.

H. TRAINING SETUP

For training the agents in the proposed scenarios,
we employed four DRL algorithms: PPO [42], A2C [43],
SAC [44], and TD3 [45]. These algorithms were implemented
using the Stable-Baselines3 framework [35].

The selection of these algorithms was based on balancing
on-policy and off-policy learning methods, as well as
their ability to handle continuous action spaces. Table 3
summarizes the main characteristics of each algorithm.

The default hyperparameter values from Stable-Baselines3
were used, with adjustments to the step-related parameters
and batch_size. Specifically, for PPO and A2C, the
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TABLE 3. Comparison of selected RL algorithms.

Algorithm | Policy Type Exploration Strategy

Key Characteristics

PPO On-policy Stochastic (policy noise)

Uses a clipped objective to prevent large policy updates,
improving training stability. Efficient for large-scale
training with parallel environments.

A2C On-policy Stochastic (policy noise)

Actor-critic method where the policy is guided by value
estimates. More sample efficient than vanilla policy
gradient but lacks a mechanism to limit updates, making
it more sensitive to hyperparameters.

SAC Off-policy

Stochastic (entropy maximization)

Encourages exploration through entropy regularization,
improving stability in continuous action spaces. Uses
experience replay and separate Q-value and policy net-
works.

TD3 Off-policy

Deterministic (target policy smoothing)

Addresses overestimation bias in DDPG with twin
Q-value networks, delayed policy updates, and target
smoothing. Improves stability and consistency in con-
tinuous action spaces, making it effective for real-world
applications.

n_steps parameter was set to 128, while for SAC and TD3,
the train_ freq parameter was set to 128. These particular
values were chosen through a random search process over
traditional powers of 2 (e.g., 32, 64, 128, 256). This choice
influences the trade-off between sample efficiency and
update frequency. Higher values for step-related parameters
allow the agent to accumulate more experience before
updating, which helps stabilize policy learning by reducing
gradient noise. However, it also delays policy updates,
potentially slowing down adaptation to new situations.
Smaller batch_size values lead to more frequent updates,
while larger values help smooth the gradient updates at the
cost of increased computational demand. Table 4 summarizes
the selected hyperparameters and their roles.

Each algorithm was trained five times with different
random seeds in both setups, Setup 1 (RL + BT) and Setup 2
(RL + RL), to ensure statistical robustness while maintaining
computational feasibility. This choice follows common
practice in RL, where a small number of seeds, typically
five, is widely adopted to report average performance with
acceptable variance [44], [46], [47].

Training was conducted for 500,000 steps per seed,
using 16 parallel environments to accelerate learning. Model
checkpoints were saved every 100,000 steps for evaluation
and debugging, while performance metrics such as episode
rewards, loss values, and training time were logged using
TensorBoard. All experiments were run on a system with
an AMD Ryzen 9 5900X processor (12 cores, 24 threads,
3.70 GHz) and 64 GB of RAM, enabling efficient parallel
execution of training environments.

I. EVALUATION METRICS

To assess the performance of the trained agents in the
air combat scenarios, four primary evaluation metrics were
considered: average episode reward; mean episode length;
and total training time for each algorithm.
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o Average Episode Reward: This metric measures the
cumulative reward achieved by the agent over an
episode, averaged across multiple runs. The moving
average is computed based on the number of episodes
completed within each policy update. Since PPO is
trained with n_steps = 128 and num_envs = 16,
each update aggregates data from 128 x 16 =
2048 environment steps. The number of completed
episodes within this window determines the averaging
scope. A higher average reward indicates improved
decision-making and maneuver execution.

e« Mean Episode Length: The mean episode length
represents the average number of steps the agent takes
before an episode terminates. This metric provides
insight into the agent’s survivability and engagement
effectiveness. Shorter episodes may indicate either
successful engagements or premature termination due
to poor tactical positioning, while longer episodes
may suggest prolonged engagements with effective
maneuvering.

o Total Training Time: This metric captures the
wall-clock time to train the agents using each algorithm
and is reported in hours. As all experiments were run
on the same machine, differences in training time reflect
algorithmic efficiency rather than hardware differences.

IV. RESULTS AND DISCUSSION

This section presents the results obtained from training the
RL agents in the two proposed setups. The evaluation focuses
on three key metrics: average episode reward, mean episode
length, and total training time. For all reported results, both
the mean and standard deviation were computed over the five
independent training runs. In the plots for average episode
reward and mean episode length, the solid line represents the
mean value, while the shaded region indicates the standard
deviation. Additionally, qualitative analyses of the agent’s
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TABLE 4. Selected hyperparameters for each RL algorithm. The remaining parameters follow the default values from Stable-Baselines3.

Algorithm | train_freq (Off-Policy) | n_steps (On-Policy)

batch_size | Explanation

PPO - 128

Collects 128 steps per environment before up-
128 dating the policy and optimizes in minibatches
to improve training stability.

A2C - 128

Collects 128 steps per environment before up-
- dating the policy in a single batch, using a syn-
chronous update mechanism.

SAC 128 -

Updates every 128 steps using experience replay
128 and entropy regularization to improve explo-
ration.

TD3 128 -

Updates every 128 steps using a replay buffer
128 and twin critics to reduce overestimation bias in
Q-values.

behavior in both configurations are provided to illustrate the
tactical maneuvers learned.

A. REWARD AND EPISODE LENGTH ANALYSIS

The following figures illustrate the learning progress of each
algorithm over the training steps for both configurations
proposed.

Figure 6 shows the evolution of the average episode
reward in Setup 1. PPO demonstrates the highest reward
convergence, followed by SAC, which stabilizes at a lower
reward. TD3 exhibits instability, with a decline after an
initial increase, which likely occurred because the agent
made some random favorable choices early in training. A2C
struggles to improve significantly, maintaining the lowest
reward throughout training.

Reward Mean - Setup 1 (RL + BT)

— PPO

SAC
— TD3
— A2C

2000

—2000

—4000

—6000

Reward Mean

—8000

—10000

—12000
0 100000 200000 300000

Training Steps

400000 500000

FIGURE 6. Average episode reward for PPO, SAC, TD3, and A2C in
Setup 1 (RL + BT).

Figure 7 presents the reward evolution in Setup 2.
Interestingly, PPO reaches its stability region even faster
than in Setup 1, with a slightly higher average reward,
demonstrating strong adaptability to the more complex
environment. In contrast, the other algorithms show worse
performance compared to Setup 1, likely due to the increased
difficulty of controlling two agents simultaneously. SAC
performs better than TD3 and A2C but remains below PPO
in terms of average reward and takes longer to stabilize. TD3,
which already showed instability in Setup 1, performs even
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Reward Mean - Setup 2 (RL + RL)
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FIGURE 7. Average episode reward for PPO, SAC, TD3, and A2C in
Setup 2 (RL + RL).

worse in Setup 2, exhibiting strong fluctuations and failing to
improve. A2C remains the weakest, showing stable behavior
but with consistently low performance and no meaningful
progress.

Previous studies have shown that PPO and SAC frequently
outperform other methods in continuous control tasks [42],
[44]. Given this, it was expected that PPO and SAC would
perform better than TD3 and A2C in this study.

Figure 8 presents the mean episode length over training
for Setup 1. PPO and SAC stabilize with shorter episode

Episode Length - Setup 1 (RL + BT)

25000
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=
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o
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\.

N~
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SAC
—— TD3
— A2C

Episode Length

5000

0 100000 200000 300000

Training Steps

400000 500000

FIGURE 8. Mean episode length for PPO, SAC, TD3, and A2C in
Setup 1 (RL + BT).
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durations, indicating faster and more decisive engagements.
TD3 shows a slower improvement compared to A2C, but its
episode length gradually increases, reaching values slightly
below A2C. A2C maintains high episode lengths throughout
training, reinforcing its weaker performance.

Figure 9 illustrates the episode length trends for Setup 2.
Overall, the episode lengths increased compared to Setup 1,
which was expected given the higher complexity of this
scenario where two agents must be controlled simultaneously.
PPO still stabilizes at shorter episode lengths, but the gap
between PPO and SAC has decreased, possibly because the
more dynamic environment reduces PPO’s relative advantage
in quickly reaching efficient strategies, allowing SAC to
perform closer to PPO.

Episode Length - Setup 2 (RL + RL)

— PPO
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c — TD3
S 400001 —— A2C
c
s
o 30000
©
o
2 20000
o
w
10000
0
0 100000 200000 300000 400000 500000
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FIGURE 9. Mean episode length for PPO, SAC, TD3, and A2C in Setup 2
(RL + RL).

Notably, the difference between TD3 and A2C has
increased, with TD3 now exhibiting longer episode durations
than A2C. This shift may suggest that TD3 struggles more
with policy convergence in the presence of another learning
agent. On the other hand, A2C, despite its generally weak
performance, maintains more consistent episode lengths,
likely because its on-policy nature limits drastic fluctuations
even if it fails to find optimal strategies.

B. TRAINING TIME COMPARISON

The total training time for each RL algorithm was measured
in hours under both configurations. Table 5 summarizes the
training duration required for PPO, SAC, TD3, and A2C
algorithms. These values reflect the computational efficiency
of each approach and provide a basis for assessing the
trade-off between training speed and model performance.

In Setup 1 (RL 4+ BT), the PPO algorithm required
the longest training time, averaging 6.77 £ 0.57 hours,
followed by SAC with 5.72 £ 0.26 hours. Despite its higher
computational cost, PPO achieved the best performance,
indicating that its longer training time is justified by superior
results. SAC, while faster than PPO, did not reach the same
performance level, suggesting that the slight reduction in
training time comes with a trade-off in effectiveness. TD3 and
A2C were the most time-efficient algorithms, with training
times of 4.74 £ 0.24 and 4.10 £ 0.25 hours, respectively, but
their performance was inferior to both PPO and SAC.
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TABLE 5. Training time comparison for algorithms in different setups.

Setup Algorithm | Training Time (hours)
PPO 6.77 £ 0.57
SAC 5724026
Setup 1 (RL + BT) TD3 474 £0.24
A2C 410 +0.25
PPO 6.30 = 0.16
SAC 5.02 £ 0.31
Setup 2 (RL +RL) TD3 3.45+0.10
A2C 3.10 £ 0.14

In Setup 2 (RL + RL), training times decreased
across all algorithms. PPO’s training time was reduced
t0 6.30 £ 0.16 hours, maintaining its performance advantage.
SAC also saw an improvement in efficiency, with a training
time of 5.02 £ 0.31 hours, though it remained less effective
than PPO. TD3 and A2C continued to demonstrate the
shortest training times, 3.45 4 0.10 and 3.10 =+ 0.14 hours,
respectively, reinforcing their computational efficiency.

Despite Setup 2 being more complex, as it required the
control of two agents through RL, the training times were
consistently lower compared to Setup 1. This result may be
attributed to the fact that training two agents simultaneously
allowed the algorithms to collect twice as much experience
per update, accelerating convergence. This suggests that
the increased complexity in agent coordination did not
necessarily lead to higher computational demands, possibly
due to the shared learning process between the agents.

C. AGENT BEHAVIOR ANALYSIS

To better understand the learned behaviors, qualitative
assessments were conducted by visualizing the agents’
actions in different combat scenarios. The analysis focused on
the PPO algorithm, which demonstrated the best performance
among the evaluated methods. This evaluation was supported
by SMEs, consisting of BVR fighter pilots from FAB,
who provided insights into tactical maneuvers, positioning
strategies, and decision patterns typically used in real-world
BVR air combat. These insights guided the design of the
reward function and served as a reference for interpreting the
agent’s behavior.

Figure 10 presents a combined image made up of three
subfigures: (a), (b), and (c), respectively, illustrating the
initial situation and agent behaviors in two distinct setups:
Setup 1 (RL + BT) and Setup 2 (RL + RL). In these
visualizations, blue and red aircraft represent the Blue and
Red teams, respectively. The cones extending forward from
each aircraft represent radar coverage. These cones indicate
the area within which each aircraft is able to detect and track
enemy targets, reflecting the sensor’s range and field of view
used for building situational awareness.

The initial situation at the start of the episode provides
a common context for both setups. In Setup 1 (RL + BT),
the PPO-controlled agent coordinates effectively with a
BT-controlled wingman. Setup 2 (RL 4 RL) features
two PPO-controlled agents exhibiting adaptive behaviors.
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FIGURE 10. Agent behavior in: (a) Initial engagement scenario, (b) Final engagement for Setup 1 (RL + BT), and (c) Final engagement for Setup 2 (RL + RL).
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FIGURE 11. Sequence of six frames from a typical engagement in Setup 2 (RL + RL). The images (#1 to #6) illustrate the evolution of the scenario,
showing the adaptive maneuvers and coordination between the PPO-controlled agents as they react to enemy actions and work together to achieve

positional advantage.

Despite the different control schemes, both setups result
in coordinated actions and successful target engagement,
highlighting the effectiveness of the proposed reward-driven
training. Agents in Setup 2 showed greater adaptability,
dynamically adjusting their strategies in response to enemy
maneuvers, while Setup 1 benefited from the predictable
support provided by the BT-controlled wingman.
Additionally, to better illustrate the agent’s behavior
evolution during the engagement, Figure 11 presents a
sequence of six frames sampled from a representative episode
in Setup 2 (RL + RL). This sequence visually captures the
agents’ coordinated maneuvers and adaptive positioning as
the engagement progresses. In these frames, it is possible
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to observe how the agents continually adjust their headings
and positions in response to both enemy actions and the
movements of their ally. The progression highlights moments
of mutual support, attempts to outmaneuver opponents, and
the use of positioning to maintain tactical advantage. By pre-
senting these key snapshots, the figure offers a clear, step-
by-step visualization of the decision-making processes and
dynamic interactions that characterize multi-agent behavior
in BVR air combat scenarios.

It is important to highlight that the use of an intermediate
reward based on collective situational awareness allowed
each agent to learn behaviors that led to situations of
collective advantage. In other words, each agent made a
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combat decision that was favorable not only to the agent
itself but also to the ally. These findings reflect common
tactical principles in real 2v2 BVR air combat, such as mutual
support, coordinated maneuvers, and adaptive targeting.
According to feedback from SMEs, the ability of RL agents
to create and maintain positional advantage while considering
the ally’s actions is similar to behaviors seen during real
pilot training. This strengthens the case for using such agents
in future decision support systems and human-autonomy
teaming [48], as it shows that these agents can internalize
and apply concepts of teamwork and collective awareness in
operational contexts.

D. EVALUATION SUMMARY

The evaluation highlights the superior performance of PPO
across both setups, achieving the highest average rewards
and shortest episode lengths, though at the cost of longer
training times. SAC demonstrated stable learning but with
slower convergence and lower rewards compared to PPO.
TD3 and A2C exhibited inconsistent performance, with TD3
struggling in complex scenarios and A2C showing limited
learning progress.

The qualitative behavior analysis was conducted specifi-
cally on PPO, given its superior performance, with the sup-
port of SMEs. This analysis confirmed that, in both training
setups, the agents were able to effectively engage enemy
aircraft by employing coordinated tactics and demonstrating
evidence of collective situational awareness throughout
the engagements, including adaptive positioning, mutual
coverage, and synchronized maneuvers. These observations
were consistent across multiple episodes, further validating
the reliability of the learned behaviors in dynamic combat
scenarios.

V. CONCLUSION AND FUTURE WORK

This work addressed the use of DRL to model the engagement
phase of BVR air combat, considering the collective situa-
tional awareness of both allies and opponents.

A key contribution was the development of the AsaGym
computational library, which allows the development and
training of DRL models for BVR air combat autonomous
agents, i.e., fighter agents. Then, using AsaGym, the study
analyzed the effectiveness of different DRL algorithms in a
multi-agent air combat scenario and assessed their tactical
capabilities based on operational knowledge from experts.

The results showed that PPO achieved the highest
performance, demonstrating superior adaptability and
decision-making, while SAC provided stable learning
with slightly lower efficiency. TD3 and A2C faced more
significant challenges in maintaining consistent performance.
Training time analysis indicated that PPO required the most
computational resources but delivered the best results, while
TD3 and A2C trained faster but with limited effectiveness.

A qualitative assessment conducted by SMEs through
visual analysis confirmed that agents with the engagement
node controlled by a DRL model exhibited adaptive and
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cooperative tactics, such as synchronized offensive maneu-
vers and effective positioning strategies. In contrast, the setup,
considering a leader with the engagement node controlled
by a DRL model and a wingman with the engagement node
controlled only by predetermined engagement rules, showed
more rigid and predictable behaviors, reflecting the structured
nature of BT-based decision-making.

Future work can address several limitations of this
study. Introducing altitude variations would create more
complex three-dimensional combat scenarios, enhancing
the agents’ maneuvering capabilities. Expanding to larger
formations, such as n-versus-m, could evaluate the scalability
of the approach and coordination among multiple agents.
Decentralizing control by assigning independent policies
to each agent, instead of a shared policy, may improve
adaptability in dynamic situations. Additionally, relying
solely on non-adaptive behavior tree-controlled opponents
may cause overfitting; incorporating adaptive adversaries or
leveraging self-play mechanisms would challenge the agents
to develop more robust tactics. We also plan to explore
adversarial reinforcement learning and self-play learning in
larger formations such as 3v3 and 4v4. Involving human
pilots in simulated missions could improve the agents’
strategies by adding realistic feedback and enabling the study
of real-time cooperation between humans and autonomous
agents.

Furthermore, future research could explore replacing other
behavior tree nodes beyond engagement, such as defensive
and offensive maneuvers, allowing RL-based agents to handle
a broader range of tactical decisions. Involving human pilots
in simulated missions could improve the agents’ strategies by
adding realistic feedback and enabling the study of real-time
cooperation between humans and autonomous agents.

Another possible direction for future research is the
evaluation and comparison of different reward functions
for multi-agent air combat. While this study focused on
one specific formulation designed to encourage collective
situational awareness, a deeper analysis of alternative reward
functions and their effects on coordination strategies may be
explored in future work.

The findings highlight the potential of DRL to improve
air combat simulations by allowing autonomous agents to
learn and perform complex collective tactical maneuvers.
The research showed that it is possible to use RL to train
intelligent fighter agents that can adapt to dynamic scenarios
and coordinate effectively in multi-agent settings. This work
has the potential to develop autonomous agents that can
operate with human pilots, supporting better teamwork
between humans and machines in tactical missions.

VI. SOURCE CODE

The source code used in this research is available
in the AsaGym repository at https://github.com/ASA-
Simulation/asa-gym. This repository provides an open-source
version of the AsaGym environment, including its main
modules, wrappers, and integration components, offering
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insights into the structure used for training and evaluating RL
agents in air combat scenarios. The ASA framework itself,
which runs the simulations, is not publicly available due to
access restrictions. However, while researchers will not be
able to run the environment, the released code can still serve
as a reference for those working on RL applications in air

combat.
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