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Abstract
Aircraft weight is a key input in flight trajectory prediction and environmental impact assessment tools.

However, the lack of openly available data regarding the actual aircraft weight throughout the flight re-

quires the development of mass estimation approaches to be incorporated into these tools. This study

uses large-scale open aviation data made available by Eurocontrol’s Performance Review Commission to

develop an open-source machine learning model to predict commercial flights’ actual takeoff weight. The

data combines detailed flight, trajectory, and meteorological information for 369,013 flights that transited

through the European airspace in 2022. Several operational features are created to represent each flight’s

horizontal and vertical profiles accurately. For model learning, we employ CatBoost, LightGBM, XGBoost,
artificial neural networks, and an ensemble of these models, which were selected for their robust perfor-

mance in structured data analysis and potential for high predictive accuracy. The models are evaluated

based on their efficiency, accuracy, and applicability to real-world data. The best-performing model is

found to predict the aircraft takeoff weights with a mean percentage of error of 1.73%.
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1. Introduction

Advances in Air Traffic Management (ATM) are important to achieve a globally sustainable aviation

industry. The implementation of novel technologies and operational concepts, such as Trajectory-

Based Operations (TBO), have been explored worldwide to reach increasingly stringent environ-

mental performance targets [1]. This requires advanced tools for modeling and predicting flight

trajectory performance and its associated environmental impact across multiple scales. To this goal,

extensive previous work has explored analytical and empirical approaches for trajectory prediction

[2, 3], fuel burn estimation [4, 5, 6] and emissions assessment [7, 8], considering the different phases

of the flight operation.

As a fundamental parameter in flight dynamics, aircraft weight is an essential input for these mod-

els. However, this information is only available in detailed aircraft data registered by Flight Data

Recorder (FDR) systems, being considered proprietary and kept confidential by airlines. This lack of
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openly available data is typically compensated with assumptions and estimations of aircraft mass,

which might introduce a significant source of error and lead to inaccurate trajectory predictions [9].

Previous studies have focused on improving mass estimations with the use of other sources of data,

such as aircraft surveillance data. Alligier et al. [10] introduced a least squares method to estimate

the mass from past trajectory points using the physical model of the aircraft and radar data. With

the advent of Automatic Dependent Surveillance-Broadcast (ADS-B), flight trajectory data has be-

come increasingly accessible to the general public through flight tracking service providers such

as the OpenSky Network [11], allowing for novel data-driven modeling approaches to be explored

by researchers. Taking advantage of large-scale historical ADS-B data from the OpenSky Network,

Alligier [12] developed a machine learning approach, using neural networks and gradient-boosting

machines to create predictive models of the mass and speed profile during the climb phase.

Specifically focused on the takeoff phase, Sun et al. [13] used ADS-B data in combination with phys-

ical kinetic models to infer aircraft takeoff weight based on two different estimation methods. More

recently, the authors [14] developed a Bayesian inference approach to estimate the initial mass at

takeoff, using independent aircraft mass estimates at different flight phases computed with analyti-

cal models that incorporate trajectory information. However, these approaches still relied on prior

knowledge of aircraft dynamics and aircraft performance parameters that are not openly available.

Thiswork proposes an open-sourcemachine learningmodel to predict a flight’s actual takeoffweight

(ATOW) based on large-scale open aviation data. The machine learning methods applied in this

study are LightGBM, CatBoost, XGBoost, artificial neural networks, and an ensemble model combin-

ing these algorithms, chosen for their effectiveness in handling structured data and potential for

high predictive accuracy. The choice of these methods reflects the popularity of Gradient-Boosting

Decision Trees (GBDT) models for tabular data and the versatility of neural networks for complex

data patterns. The main motivation for this work was the Eurocontrol Performance Review Com-

mission (PRC) Data Challenge [15], which emphasized the need for open models to support studies

assessing the impact of aviation on climate change.

The remainder of this article is organized as follows. Section 2 presents the methodology used to

process the data and develop predictive models. In Section 3, we discuss the results, comparing and

analyzing different machine learning models. Finally, Section 4 concludes and shares ideas for future

work.

2. Method

This section provides a comprehensive overview of the methods used in this study, including data

preprocessing, feature engineering, and predictive modeling techniques. We describe the datasets

and the steps taken to prepare and enhance them, focusing on how meaningful features were ex-

tracted for model learning. The trajectory data processing was developed in R, while the feature

engineering and the machine learning models were implemented in Python. Our code is released as

open source
1
.

2.1 Data Description

This subsection details the open-source datasets used in the study, including flight and trajectory

data and supplementary sources that enrich the analysis. These datasets provide essential informa-

tion on flights, aircraft characteristics, and operational parameters, serving as the basis for building

predictive models.

1
https://github.com/PRC-Data-Challenge-2024/team_tiny_rainbow
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2.1.1 Flight and Trajectory Data

Through the PRCData Challenge, Eurocontrol provides the primary data used in this work to predict

a flight’s actual takeoff weight.

The challenge data made available for model learning is composed of two datasets. The first contains

flight data for 369,013 flights that departed or arrived at a European airport in 2022. It provides flight

identification, origin, destination airports, aircraft type and wake turbulence category, airline, and

operational parameters such as departure and arrival times, flight duration, taxi-out time, flown

distance, and the actual takeoff weight (ATOW).

The second dataset provides detailed trajectory data for each flight, including 4D position reports

(longitude, latitude, altitude, timestamp), ground speed, track angle, and vertical climb/descent rates.

For example, Figure 1 shows the horizontal profile of flight trajectories for one day of operations in

the European airspace. Additionally, when available, the dataset provides meteorological data for

each 4D position, encompassing the wind components and temperature. It is worth mentioning that

flight trajectories are not necessarily complete due to limited ADS-B coverage in some parts of the

world and lower altitudes.

Figure 1. Horizontal profile of trajectories flown in the European airspace on April 2, 2022.

The Data Challenge provided a final submission dataset with flight and trajectory data for an addi-

tional set of 158,149 flights to rank the participating teams. We also used this dataset to evaluate the

final performance of the models learned based on the predictive performance metrics computed by

the Data Challenge organizers.
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2.1.2 Supplementary Data

This study utilized two open-source supplementary datasets to gather airports’ geographic coordi-

nates (latitude, longitude) and altitude: the OpenFlights Airports Database
2
and the Global Airport

Database
3
. While these sources provided extensive coverage, information about 15 airports in both

the challenge and submission sets was still lacking, which we manually extract from Google Maps

and added to the dataset to ensure completeness. Additionally, we incorporated an open-source

dataset from the Federal Aviation Administration (FAA)
4
, which contains detailed aircraft charac-

teristics. This dataset, updated in September 2023, provides aircraft performance parameters and

operational characteristics for our analysis. Furthermore, we created a supplementary database to

capture additional aircraft features not present in the FAA dataset. This extra data was compiled

manually from public sources, including Wikipedia, technical sheets, factory specifications, and Eu-

rocontrol Data, to enhance the accuracy and completeness of our analysis. For more information on

the datasets, refer to the source code of this work.

2.2 Data Preprocessing

In this study, trajectory data preprocessing consisted of two main steps: merging datasets and seg-

menting the flight trajectory into three phases – departure, en route, and arrival. The trajectory data

and other flight information were integrated to represent flight trajectories comprehensively. The

merging process involved aligning the datasets based on unique flight identifiers and timestamps.

This step ensured consistency in each flight record’s temporal and spatial attributes, enabling ac-

curate tracking of aircraft positions and speeds over time. Also, to analyze the various phases of

flight, each trajectory was segmented into three key stages: terminal area departure, en route, and

terminal area arrival. We follow the flight phase segmentation currently used for ATM performance

analysis, modeling the departure/arrival terminal areas with cylindrical volumes with centers at the

origin/destination airports and with a radius of 40 NM/100 NM, respectively.

Thus, the departure phase is defined as the segment of the flight trajectory from takeoff until the

aircraft exits a 40 NM radius cylinder centered on the departure airport, capturing the aircraft’s initial

climb and acceleration. The en-route phase represents the flight segment between the departure

and arrival cylinders, characterized by the aircraft’s cruise altitude and relatively stable speed and

heading. The arrival phase corresponds to the flight segment from when the aircraft enters the

100 NM radius cylinder centered on the destination airport until it lands, encompassing the descent

and approach procedures. The segmentation was implemented using a spatial filtering technique

that evaluates the aircraft distance from the respective airports, allowing for precise identification

of entry and exit points into the cylindrical volumes. This approach ensures that each flight phase

is accurately identified, facilitating subsequent analyses of the aircraft behavior in different flight

stages. As an example, Figure 2 shows the trajectory of a flight from Lyon–Saint Exupéry Airport

(LFLL) to Brussels Airport (EBBR), segmented by flight phase.

2.3 Feature Engineering

This subsection details the feature engineering techniques applied to preprocess and enhance the

dataset for modeling purposes. The goal was to extract meaningful features that capture tempo-

ral patterns, flight characteristics, geographical information, spatial relationships, and interactions

between various flight parameters.

We engineered several new features to capture horizontal and vertical profile characteristics of flight

trajectories, temporal dynamics, flight efficiency, geographical context, and the relationship between

2
OpenFlights Airports Database: https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat

3
Global Airport Database: https://www.partow.net/miscellaneous/airportdatabase/

4
FAA Aircraft Characteristics Database: https://www.faa.gov/airports/engineering/aircraft_char_database/data
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Figure 2. Segmentation of flight phases for a flight from Lyon–Saint Exupéry Airport (LFLL) to Brussels Airport (EBBR).

different flight parameters. Specifically, we focused on temporal attributes extracted from departure

and arrival times, duration-based metrics like taxi ratios and flight speeds, geographical categoriza-

tions based on regions and countries, interaction terms combining airspeed and specific energy, and

ratio calculations between vertical rate and airspeed.

For the interested reader, the complete feature engineering code is available in a notebook that

includes detailed comments, explanations, and intermediate printouts to help readers understand

the processing and transformation applied to each feature used in the analysis. The link to the

repository is provided at the end of this work. Due to the large number of variables used, we did not

provide a complete list in the manuscript, as to avoid taking up too much space, but we describe the

process of obtaining these variables throughout this section.

2.3.1 Flight Trajectory Features

Following the identification of flight phases, we created several features to describe the actual tra-

jectory profiles and the meteorological conditions during the operation. For each flight phase (de-

parture, en route, and arrival), we computed the following aggregate features:

• mean of vertical rate (ft/min), airspeed (m/s), squared airspeed, ground speed (kt), temperature

(K), humidity (g/kg), and altitude (ft);

• maximum altitude (ft), defined as the 99
th
percentile of altitude values to mitigate the impact of

noisy observations;

• total wind distance (m), i.e., the sum of the products of tailwind/headwind speed and time;

• flown distance (NM);

• specific energy at the last data point (V 2
+ gh), where V is the airspeed (m/s), g is the gravity

acceleration (m/s2) and h is the height (m)).

Specifically for the departure phase, for flights with the first observation within 2 nautical miles

of the origin airport, we enriched the dataset with the time series of airspeed, squared airspeed,

temperature, height relative to the origin airport, specific energy, and vertical rate for the first ten
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observations after takeoff. Additionally, we included information regarding the efficiency of the

vertical profile from takeoff until the top-of-climb. We computed the total time (min) and distance

flown (NM) in level flight from takeoff until the top-of-climb, as level-off segments tend to generate

higher fuel burn. Particularly in the departure phase, these level segments might be more probably

associated with structural inefficiencies rather than operational inefficiencies, potentially being ac-

counted for during fuel planning. Moreover, step climbs may correlate with aircraft weight. As fuel

is consumed and aircraft mass diminishes, the aerodynamic efficiency at higher altitudes improves,

necessitating incremental climbs to optimize fuel consumption. Furthermore, heavier aircraft may

exhibit reduced initial climb performance, rendering step climbs a strategic method to achieve op-

timal flight levels. To compute the vertical efficiency during the climb, we follow Eurocontrol’s

methodological approach [16]. For the trajectory portion within 200 NM from the origin airport and

3,000 ft above ground level, we identify the highest altitude reached as the Top-of-Climb (TOC). An

exclusion box is defined around the portion of the vertical profile for which the altitude is greater

than or equal to 90% of the TOC. Climb segments with a rate of climb smaller than or equal to 300

ft/min are then identified as level-off segments, provided they occur outside the exclusion box if last-

ing more than 5 minutes. The distance and time flown in level segments are calculated and summed

to produce the features. The approach is illustrated in Figure 3.

Figure 3. Illustration of the identification of level segments during climb for vertical efficiency quantification.

Finally, we created additional features to describe operational features that are expected to be cor-

related with the aircraft’s takeoff weight based on prior literature. These include the specific energy

at the distance of 10 NM flown [17] and the liftoff airspeed and groundspeed [14].

2.3.2 Temporal Features

From the departure time, we extracted attributes such as the hour of departure, day of the week,

month, week of the year, and the season — categorized into Winter, Spring, Summer, or Fall based

on the month. This allowed us to capture daily, weekly, and seasonal patterns that could influence

flight operations. For example, flights departing during peak hours or specific seasons might experi-

ence different conditions affecting performance. Additionally, we created boolean flags based on the

departure time to indicate whether the flight departed on weekends or during rush hours (defined

as 7–9 AM or 4–6 PM based on our exploratory data analysis). These features help assess the impact

of higher traffic volumes on flight performance.

2.3.3 Duration-Based Features

We engineered several duration-based features to capture aspects of flight efficiency and perfor-

mance. We calculated the ratio of taxi-out time to flight duration, known as the taxi ratio, which

assesses the proportion of time spent taxiing relative to the total flight duration. A high taxi ratio

might indicate congestion at the airport or inefficiencies in ground operations.

We also calculated the average speed of the flight by dividing the flown distance by the flight du-

ration. This feature helps analyze operational efficiency over different distances and durations. To

https://orcid.org/0000-0002-0204-4723
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maintain data consistency, missing values in flight speed were filled with the median.

To categorize flights based on duration, we introduced a flight duration category by binning the flight

durations into Very Short (0–60 minutes), Short (60–180 minutes), Medium (180–300 minutes), and

Long (over 300 minutes). This categorization may help segment flights for analysis and modeling

purposes. Grouping durations into categories could allow the model to recognize patterns in differ-

ent types of flights, making it easier to capture potential operational differences, such as fuel usage

and air traffic procedures.

2.3.4 Geographical Features

Using the Haversine formula to incorporate geographical context and spatial relationships, we cal-

culated the distance between the departure and arrival airports. It computes the great circle distance

between two points on the Earth’s surface based on their latitudes and longitudes. This resulted in

a new feature representing the actual distance of the flight path. We also calculated the altitude dif-

ference between the arrival and departure airports to capture the vertical distance traversed during

the flight. The bearing between the two airports was computed to determine the initial compass

direction from the departure airport to the arrival airport. Additionally, we calculated the elevation

gradient by dividing the altitude difference by the actual distance, representing the altitude change

rate per kilometer. These features can influence fuel consumption and flight performance.

Furthermore, we performed clustering based on the departure and arrival airports’ geographical

coordinates (latitude and longitude). By combining these coordinates and applying the K-Means

clustering algorithm, we aimed to identify spatial groupings of airports. We also grouped airports

by region based on their country codes, assigning the departure and arrival airports to regions such

as Europe, North America, South America, the Middle East, Asia, Africa, and others. This regional

classification facilitates the analysis of patterns and differences in flight operations across regions.

We developed features to indicate whether a flight was domestic or international. Another feature

captured whether the flight occurred within the same geographical area, helping to identify flights

that may share common air traffic control procedures or weather patterns.

To capture the flight direction, we created a feature that categorizes flights based on the regions of

the departure and arrival airports. This classification enables the analysis of common flight routes

and directional trends, offering insights into regional air traffic patterns. We also introduced a feature

to identify intercontinental flights, which helps differentiate flights with varying characteristics due

to longer distances, diverse regulations, and different airspace complexities.

2.3.5 Interaction Features

We created interaction features to capture the combined effects of certain flight parameters. Specif-

ically, we multiplied the average airspeed by the specific energy during different flight phases, gen-

erating new variables for the arrival, departure, and en route phases. This interaction helps quantify

how velocity contributes to the aircraft’s total energy state, which is a key factor in assessing ma-

neuverability and efficiency. By incorporating these features, we aim to analyze how variations in

speed influence the aircraft’s energy availability and operational performance across different stages

of flight.

2.3.6 Aircraft Characteristics Features

In addition to the flight trajectory features, we incorporated several aircraft-specific characteristics

to enhance our predictive models. These features capture the physical and operational attributes of

each aircraft type that influence takeoffweight. We included theMaximumTakeoffWeight (MTOW),

which represents the maximumweight at which the aircraft is certified for takeoff, serving as an up-

per limit for our predictions. The Operating EmptyWeight (OEW) was also incorporated, represent-
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ing the basic weight of the aircraft including crew but excluding usable fuel and payload. Maximum

payload capacity was considered to account for the weight limitations of passengers, cargo, and

baggage. Fuel capacity data provided information on the maximum amount of fuel each aircraft can

carry, directly impacting potential takeoff weight. We also utilized engine specifications, including

type and count, which affect fuel consumption and performance characteristics. Aircraft age catego-

rization (new, mid-life, or older generation) was included to reflect technological advancements in

fuel efficiency. Seating configuration data provided insight into standard passenger capacity, while

physical dimensions such as wing span and area were incorporated to account for aerodynamic

performance factors. Finally, we included range capability information to represent the maximum

distance each aircraft can fly without refueling under standard conditions. These aircraft-specific

features provide the model with essential context about the physical constraints and operational

capabilities of each aircraft type, which are fundamental determinants of takeoff weight.

2.3.7 Binning Continuous Variables

We discretized certain continuous variables into bins to manage the effects of outliers and capture

potential nonlinear relationships. We created temperature bins by categorizing the average temper-

ature during the arrival phase into five equal-frequency categories. This allows the model to capture

the impact of temperature variations on flight operations without being overly sensitive to extreme

values. Similarly, we created humidity bins by categorizing the average humidity during the de-

parture phase into five categories. Binning these variables facilitates the detection of patterns and

thresholds in how temperature and humidity affect flight performance.

2.3.8 Ratio Features

We engineered ratio features to analyze the relationship between vertical rate and airspeed during

flight phases. The vertical rate indicates the rate of climb or descent, while the airspeed reflects the

horizontal speed. The ratios provide insights into the aircraft’s climb or descent efficiency relative

to its speed during the arrival and departure phases.

2.4 Predictive Models

Given the popularity of machine learning models, there are many techniques available. To select

which ones we would consider, we used our prior experience as machine learning practitioners and

researchers together with knowledge from the literature [18].

Despite Deep Learning dominating perception tasks and big data regimes, machine learning prac-

titioners have noticed that Gradient-Boosted Decision Trees (GBDT) often outperform neural net-

works on tabular data [18]. In fact, the winning solutions in Data Science competitions usually

employ GBDTs. In this regard, the methods XGBoost [19], CatBoost [20], and LightGBM [21] are

especially popular [18]. In [22], Abdullahi et al. compare these algorithms according to the main

features such as speed, scalability, and memory. These comparisons are in Table 1. Therefore, based

on our experience and the benchmark provided by [18], we decided to evaluate these three GBDT

methods and neural networks for our predictive models.

We standardized parts of our training pipeline to ensure a fair comparison between the machine

learning methods. We separated the dataset into training and test sets with an 80-20 split using the

same random seed for every technique. Since the trajectory data was incomplete for all flights, some

of the trajectory features presented missing values. Therefore, we tried different methods of data

imputation. Experimentally, we found that using the median of the valid elements of the respective

column worked the best, outperforming more advanced techniques, such as linear regression and

k-NN. This behavior was consistent across the different learning algorithms.

Furthermore, we executed hyperparameter optimization through the Optuna library [23] for each

https://orcid.org/0000-0002-0204-4723
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Table 1. Comparison of features of CatBoost, LightGBM, and XGBoost.

Feature CatBoost LightGBM XGBoost

Categorical Feature
Handling

Best at handling
categorical variables
automatically.

Requires pre-processing
for categorical variables.

Requires pre-processing
for categorical variables.

Overfitting
Robustness

Less prone to overfitting
due to symmetrical trees.

Prone to overfitting if not
careful with parameters.

Regularization helps
prevent overfitting
effectively.

Speed Slower, especially on large
datasets.

Fastest due to
histogram-based
algorithms.

Fast but generally not as
fast as LightGBM.

Scalability Good but less optimal for
extensive datasets.

Excellent scalability to
large datasets and
high-dimensional data.

Good scalability,
especially with system
optimizations for parallel
processing.

Memory Usage Moderate Low due to efficient data
handling.

High, especially with large
data sets.

Ease of Use
Easier with default
settings handling
categorical data well.

Requires careful data
preparation and
parameter tuning.

Requires significant
parameter tuning and
understanding of
boosting.

Data Size Handling Handles small datasets
well.

Not as effective with small
datasets.

Effective with both large
and small datasets but
requires tuning.

method. We also implemented early stopping to prevent overfitting and enhance model generaliza-

tion. During training, the process halts if there is no improvement in the validation performance

metric after 50 iterations, helping to avoid excessive fitting to the training data and ensuring robust

performance on new data. Before submitting the estimated ATOW in the submission dataset for

evaluation by the Data Challenge server, we retrained each model using the whole challenge dataset

for the best possible performance. Specific details of each learning algorithm are presented in the

following subsections.

2.4.1 Artificial Neural Networks

This study employed two distinct artificial neural network architectures: a feedforward neural net-

work implemented via FastAI’s Tabular learner [24] and the Self-Attention and Intersample Atten-

tion Transformer (SAINT) model [25]. These approaches represent different levels of complexity

in tabular data processing, each with its own merits in terms of performance and computational

requirements.

The FastAI Tabular learner implements a multilayer perceptron (MLP) optimized explicitly for tab-

ular data. The architecture comprises an embedding layer for categorical variables, a preprocessing

module for continuous variables, multiple fully connected layers, and an output layer. The embed-

ding layer transforms categorical variables into dense vector representations, with the embedding

dimensionality d for each variable determined by

d = min(600, round(1.6 ∗ n_categories0.56)), (1)

where n_categories is the number of unique categories in the variable. This adaptive dimensionality

ensures appropriate representational capacity based on the cardinality of each categorical variable.
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Continuous variables undergo standardization and, optionally, batch normalization to mitigate in-

ternal covariate shifts. The network’s core consists of a fully connected layer sequencewith Rectified

Linear Unit (ReLU) activation functions. These layers can be customized regarding width and depth

andmay incorporate batch normalization and dropout regularization to enhance generalization. The

output layer’s architecture is task-dependent, utilizing a single unit with sigmoid activation for bi-

nary classification or multiple units with softmax activation for multi-class problems.

The Tabular learner incorporates several advanced optimization techniques. It employs a learning

rate finder to determine optimal learning rate ranges, implements discriminative learning rates to

allow differential learning speeds across network layers, and utilizes cyclical learning rate schedules

to improve convergence characteristics and generalization performance.

In contrast, the SAINT model represents a more advanced approach, taking advantage of recent

developments in transformer architectures. SAINT’s primary innovation lies in its dual attention

mechanism, which combines self-attentionwithin samples and intersample attention across different

samples in a mini-batch. This mechanism enables the model to capture complex intra and inter-

sample interactions, potentially leading to more nuanced feature representations.

SAINT initially projects categorical and continuous variables into a unified embedding space, facil-

itating interactions between different feature types. The embedded representations are then pro-

cessed through a stack of transformer encoder blocks, where each block comprises self-attention

and intersample attention layers, followed by feed-forward networks, which allow an iterative re-

finement of representations, capturing increasingly complex patterns in the data.

A notable feature of SAINT is its ability to utilize contrastive pre-training. This unsupervised learn-

ing technique enhances the model’s ability to learn robust representations by contrasting similar

and dissimilar samples. The pre-training phase can be particularly advantageous in semi-supervised

scenarios or when dealing with limited labeled data.

Empirically, SAINT has demonstrated superior performance on various tabular datasets, often sur-

passing traditional gradient-boosting methods and other neural network approaches as its capacity

to capture more relationships in the data makes it particularly suitable for complex tabular problems

where simpler models may be inadequate. However, when applied to this dataset, its performance

was the lowest, which could be attributed to the regression nature of the problem and the fact that

most input variables were continuous and not categorical, in contrast with most tabular datasets.

The models were trained for up to 50 epochs, with early stopping using a maximum learning rate

of 0.005 that decreased according to a cosine annealing schedule. This learning rate was found

following the super-convergence heuristic, which is the learning rate one order of magnitude lower

than the one in which the loss would diverge. We used the Adam (Adaptive Gradient Estimation)

optimizer to update the network’s parameters given the gradients of the loss computed by back-

propagation. While we did not automate the search of the network’s hyperparameters using Optuna,

we performed a simple sweep over various network widths ranging from 32 up to 256 neurons per

layer.

Both neural network architectures were trained with carefully selected hyperparameters, detailed in

Table 2. For the FastAI Tabular learner, we used a batch size of 128, which balanced computational

efficiency with model convergence quality. The network was trained using the Adam optimizer

with a maximum learning rate of 0.005 controlled by a cosine annealing schedule. We employed

early stopping with a patience of 50 epochs to prevent overfitting. The model’s performance was

evaluated using the root mean squared error metric, scaled appropriately to the range of the target

variable.

For the SAINT model, we explored multiple hyperparameter configurations through a systematic

https://orcid.org/0000-0002-0204-4723
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manual search. The optimal configuration included an embedding size of 32, transformer depth of

6 with 8 attention heads, attention dropout of 0.1, and feed-forward dropout of 0.1. The model was

trained with a batch size of 2048 using the AdamW optimizer with a learning rate of 0.002 for up to

50 epochs. We incorporated both contrastive and denoising pre-training tasks for 15 epochs prior

to supervised training, which helped the model learn robust representations from the tabular data.

Model selection was performed using a dedicated validation set (5% of the training data), and we

saved the model with the lowest validation error for final evaluation.

Table 2. Neural network hyperparameters

Hyperparameter FastAI Tabular Learner SAINT Model

Batch size 128 2048

Learning rate 0.005 0.002

Optimizer Adam AdamW

Embedding size Adaptive 32

Hidden layers [400, 300, 200] -

Transformer depth - 6

Attention heads - 8

Dropout 0.1 0.1 (attention), 0.1 (feed-forward)

Pre-training No Yes (contrastive and denoising)

Early stopping patience 50 50

The selection of these values was based on a combination of literature recommendations, empirical

observations during preliminary experiments, and resource constraints. While we did not employ

automated hyperparameter optimization for the neural networks due to computational limitations,

our manual tuning process was guided by established best practices for tabular data modeling.

2.4.2 CatBoost

According to Hancock and Khoshgoftaar [20], CatBoost is an open-source GBDT implementation

optimized to effectively handle categorical data in supervised machine learning scenarios. Moreover,

it introduces two main innovations: 1) Ordered Boosting, which enhances the handling of the order

in which data is processed to avoid overfitting; 2) Ordered Target Statistics, a technique to process

categorical variables by calculating statistics on the target variable. These features allow CatBoost

to manage categorical data more efficiently than popular GBDT implementations like XGBoost or

LightGBM, which often require extensive preprocessing to convert categorical data into numerical

formats.

To optimize CatBoost’s hyperparameters with Optuna [23], we used the Tree-structured Parzen

Estimator (TSE) algorithm and the ranges presented in Table 3. Notice that the value for reg_lambda
is searched in a logarithmic scale. Despite the learning_rate being an important hyperparameter,

it is relatively easy to tune manually while significantly impacting the model’s performance. We

noted that a smaller learning_rate generally resulted in a better model but took much longer to

train. Hence, we decided to use a fixed learning_rate of 0.05 during the hyperparameter search

for a maximum of 10,000 iterations. Then, we reduce it to 0.01 when training the final model for a

maximum of 100,000 iterations.

We highlight that the final training took around 4 hours on a high performance computer with an

Intel Core i9-7900X @ 3.30 GHz processor and a NVIDIA GTX 1080 GPU card. Furthermore, we

employed early stopping with 50 of patience, both during the hyperparameter search and the final

training.
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The tuned hyperparameters can be briefly described as follows. The learning_rate controls the

step size of an update during training, with lower values enhancing generalization but increasing

training time. reg_lambda is the coefficient of the L2 regularization in the cost function, used to

penalize large model weights. random_strength influences the amount of randomness used to score

splits, which helps enhancing robustness. depth defines the depth of the decision trees in order to

control the trade-off between model complexity and overfitting. min_data_in_leaf sets the mini-

mum number of samples required in a leaf, so to avoid learning from noise. The hyperparameter

leaf_estimation_iterations sets how many iterations are used to estimate leaf values. For more

information, we refer the interested reader to the CatBoost’s documentation.

Finally, we extensively used the feature selection mechanism of CatBoost to determine which fea-

tures should be eliminated from the model. Combining hyperparameter optimization and feature

selection (both manually and through CatBoost’s select_features()), we improved model perfor-

mance considerably.

Table 3. CatBoost hyperparameters and corresponding ranges used in Optuna.

Hyperparameter Range Type Log Scale

reg_lambda [10
−5
, 100] float Yes

random_strength [10, 50] float No

depth [1, 15] int No

min_data_in_leaf [1, 30] int No

leaf_estimation_iterations [1, 15] int No

2.4.3 Light Gradient-Boosting Machine

LightGBM, or Light Gradient Boosting Machine, in Ke et al. [21], is an efficient GBDT framework

designed for distributed and efficient learning, particularly for large-scale and high-dimensional

data.

According to Ke et al. [21], LightGBM offers several advantages and innovative features compared

to traditional gradient boosting methods: 1) Gradient-based One-Side Sampling improves the data

sampling process. It ensures that the most informative instances with larger errors (and thus more

significant gradients) are used for learning, enhancing the model’s efficiency without compromising

accuracy; 2) Exclusive Feature Bundling: reduces the dimensionality by bundling mutually exclusive

features in high-dimensional data, many features are sparse, which means they contain primarily

zeros; 3) Efficient Handling of Categorical Features: handles categorical features by value mapping,

which is more efficient than the one-hot encoding used by many other algorithms; and 4) Leaf-wise

Tree Growth: grows trees leaf-wise and chooses the leaf that minimizes the loss for growth, allowing

for better fitting models, often resulting in increased accuracy with fewer leaves.

Likewise, we employed Optuna [23] to tune the best hyperparameters of LightGBM, using the ranges

presented in Table 4. The training of the LightGBMmodel with Optuna involved setting up an early

stopping mechanism and logging the evaluation results during each iteration.

The hyperparameters shown in Table 4 can be briefly described as: the learning_rate defines the

step size of the model adjustment at each step; max_depth limits the depth of trees to prevent over-

fitting; min_child_weight sets the minimum sum of instance weights in a leaf; colsample_bytree
defines the fraction of features randomly chosen for each tree, improving diversity and reducing

overfitting; reg_alpha applies L1 regularization while reg_lambda applies L2 regularization; and

n_estimators specifies the number of boosting iterations. For more information, we refer the inter-

ested reader to the LightGBM’s documentation.
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Table 4. LightGBM hyperparameters and corresponding ranges used in Optuna.

Hyperparameter Range Type Log Scale

learning_rate [1e-3, 0.1] float Yes

max_depth [3, 15] int No

min_child_weight [1, 10] int No

colsample_bytree [0.4, 1.0] float No

reg_alpha [1e-4, 1.0] float Yes

reg_lambda [1e-4, 1.0] float Yes

n_estimators 1,000,000 int No

2.4.4 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a highly efficient, scalable machine learning system for

tree-based boosting, developed initially by Chen and Guestrin [19]. This algorithm builds upon

traditional gradient boosting by introducing optimizations that make it particularly effective for

large-scale and high-dimensional data. One of its core strengths is its ability to handle sparse data

efficiently, allowing it to manage missing or zero-filled values without imputation.

XGBoost incorporates a weighted quantile sketch algorithm to accommodate diverse data distribu-

tions. This algorithm approximates quantiles where data points carry different weights or signifi-

cance. This feature is especially beneficial for datasets with varying data densities and for models

that need to prioritize certain data instances, such as in imbalanced classification tasks.

Additionally, XGBoost leverages parallelized tree construction and distributed computing capabili-

ties, enabling it to handle massive datasets while maintaining low training times. It integrates regu-

larization techniques, such as L1 and L2 regularization, which help reduce overfitting and improve

the model’s generalizability. These combined features make XGBoost one of the top choices for

machine-learning competitions and real-world applications, often outperforming other algorithms

in accuracy and computational efficiency.

Key hyperparameters for XGBoost include learning_rate, max_depth, min_child_weight, gamma,
colsample_bytree, reg_alpha, and reg_lambda. Each of these influences the model’s complexity,

regularization, and generalization ability.

The learning_rate controls the step size at each iteration. The max_depth hyperparameter deter-

mines the maximum depth of each tree, impacting both model complexity and potential overfitting.

The min_child_weight value is theminimum sumof instanceweights needed to split a node, control-

ling overfitting by limiting intense trees. The gamma parameter introduces a minimum loss reduction

for further partitioning, creating a threshold for additional split operations.

For feature sampling, colsample_bytree specifies the fraction of features to be randomly sampled

at each tree, helping reduce the correlation between trees and increase model robustness. The

reg_alpha and reg_lambda variables add L1 and L2 regularization terms, respectively, controlling

the model’s complexity and penalizing large coefficients to prevent overfitting. Table 5 summarizes

the values used during the hyperparameter optimization process.

2.4.5 Ensemble

According to [26], ensemble methods are learning algorithms that combine multiple models to make

predictions by aggregating their outputs. While ensembles are widely used in both classification and

regression tasks, our focus is on regression for predicting continuous values.
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Table 5. XGBoost hyperparameters, corresponding ranges, and descriptions used in Optuna optimization.

Hyperparameter Range Type Log Scale

max_depth [3, 15] int No

min_child_weight [1, 10] int No

gamma [0.001, 1.0] float Yes

colsample_bytree [0.4, 1.0] float No

reg_alpha [0.0001, 1.0] float Yes

reg_lambda [0.0001, 1.0] float Yes

Ensemblemethods can be broadly categorized into non-adaptive approaches (such as bagging, where

models are combinedwith equalweights) and adaptive approaches (such as stacking or Super Learner

[27], where model weights are learned from data). In this work, we implement an adaptive ensemble

approach similar to stacking [28], which optimizes the combination weights to minimize prediction

error.

For our ensemble, each model h in the hypothesis spaceH outputs a continuous prediction h(x) for
an input x. The ensemble combines these predictions through a weighted sum to produce the final

prediction:

fensemble(x) =
∑︁
h∈H

whh(x), (2)

where wh represents the weight assigned to model h, and
∑

h∈H wh = 1.

To determine the optimal weights, we use a holdout validation set (20% of the original training data)

that was not used in training the individual models. Theweights are learned by solving a constrained

optimization problem that minimizes the empirical risk on this validation set using Quadratic Pro-

gramming (QP):

min

w

1

n

n∑︁
i=1

(
yi −

∑︁
h∈H

whh(xi)

)
2

subject to

∑︁
h∈H

wh = 1,

wh ≥ 0, ∀h ∈ H .

This optimization approach has several advantages over simple averaging. First, it can give higher

weight to models that perform better than others on the training set. Second, it can deal with corre-

lated predictions between models by adjusting their relative contributions. Third, it can completely

exclude models that do not add predictive value beyond what is already captured by other models

in the ensemble.

The theoretical benefits of such weighted ensembles have been well-established in the literature.

Breiman [28] showed that stacked regression can achieve lower prediction error than any of the

individual models, while van der Laan et al. [27] demonstrated that the Super Learner approach is

asymptotically optimal among the class of all weighted combinations of the candidate learners.

To find the optimal weights for our ensemble model, we employed a two-stage process. First, we

split our available data into two portions: 80% for training the individual models (CatBoost, Light-

GBM, XGBoost, and neural networks), and a held-out 20% validation set specifically for computing

the optimal ensemble weights using the quadratic programming approach described above. This

separation ensures that the weights are learned on data not seen during individual model training,
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helping to avoid potential overfitting. After the weights are learned, we retrain each individual

model on the full training dataset before applying the ensemble to make predictions on new data.

For the final evaluation on the submission dataset, all models were retrained using the complete

challenge dataset with the pre-computed optimal weights applied to their predictions.

2.5 Predictive Performance Evaluation

To evaluate the performance of our predictive models, we used the Root Mean Squared Error (RMSE)

as the primary metric, given its suitability for regression problems and sensitivity to large errors,

which is essential in applications requiring high predictive performance. RMSE measures the aver-

age squared differences between predicted and actual values:

RMSE =

√√
1

n

n∑︁
i=1

(yi − ŷi)2, (3)

where yi and ŷi are the i-th actual and predicted values, respectively. Additionally, we computed the

Mean Absolute Percentage Error (MAPE) to obtain a more intuitive estimate of the prediction error

as a percentage of the actual output. Mathematically, MAPE is defined as

MAPE =

1

n

n∑︁
i=1

����yi − ŷi
yi

���� × 100. (4)

3. Discussions

This section presents a detailed discussion of the study’s key findings. We begin with an exploratory

data analysis to identify patterns and trends in the data. Next, we evaluate the predictive perfor-

mance of the models, followed by an analysis of the importance of features to understand the factors

influencing model predictions. Lastly, an ablation study is conducted to assess the contribution of

different model components to overall performance.

3.1 Exploratory Data Analysis

We performed an exploratory analysis of the flight dataset to understand its characteristics better.

Figure 4 shows the total number of flight observations for each month of 2022, and Figure 5 depicts

the hourly distribution of actual departure times. The monthly distribution reveals that August 2022

accounted for the maximum number of flights, likely due to the increased demand volume typically

seen for the European summer vacation period. By contrast, the lowest number of operations was

observed for February 2022. The hourly distribution indicates that traffic departing from European

airports rises in the early morning, reaching the peak at 9:00 UTC, when it decreases until around

13:00 UTC. Traffic builds up again in the afternoon, peaking at 16:00 UTC, before gradually declining

until the end of the day.

Regarding spatial coverage, the flight data contains observations for 4,228 origin-destination (OD)

pairs, as shown in Figure 6. Most of the flights are within the European airspace, but the data also

contains international flights between Europe and North, Central and South America, Africa, the

Middle East, and Asia. The maximum number of 2,157 European flights was observed between

London Heathrow Airport (EGLL) and Dublin International Airport (EIDW). Among the interna-

tional routes, John F. Kennedy International Airport (KJFK) and London Heathrow Airport (EGLL)

accounted for the maximum number of 763 flight observations.

The flights in the dataset were operated by 29 airlines using 30 different aircraft types, all pertaining

to medium or heavy wake turbulence categories. Figures 7 and 8 show each airline and aircraft
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Figure 4. Total number of flight observations per month.

Figure 5. Hourly traffic distribution.

type’s percentage share of flight operations. More than 80% of flights were operated by six different

airlines, with two airlines concentrating more than 40% of the operations. In terms of aircraft, the

distribution is slightly less uneven, with more than 80% of the flights executed with ten different

types. The A320 was the most used aircraft type, representing 21.6% of the observations.

Figure 9 presents the distribution of ATOW for each aircraft type. As expected, the lowest ATOW

was observed for the only medium turboprop aircraft (AT76). Among the medium jets, B752 showed

the highest ATOW, while CRJ9 showed the lowest. Heavy jets were inherently associated with the

highest levels of ATOW. However, we observed a very high variability for some models, such as the

B77W.
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Figure 6. Origin-destination pairs and corresponding number of flight observations.

Figure 7. Share of flight operations by airline.

Figure 10 shows the scatterplot of ATOW and distance flown for the most frequent aircraft types

within each wake turbulence category (medium turboprop, medium jet and heavy jet), suggesting

that route length does not explain a significant part of the ATOW variability.

3.2 Predictive Performance Analysis

This subsection presents the predictive performance analysis of six algorithms: XGBoost, CatBoost,

LightGBM, MLP (FastAI Tabular learner), SAINT, and an ensemble combining all models. Their

performance is also compared to a baseline model that returns the MTOW as output. The study

focuses on key metrics, including the best hyperparameters identified through optimization and the
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Figure 8. Share of flight operations by aircraft type.

Figure 9. Boxplot of actual takeoff weight for each aircraft type.

estimated RMSE and MAPE for the test dataset. Notice that the test dataset is obtained after the

80-20 split done locally. We also present the actual RMSE for the final submission dataset provided

by the Data Challenge to rank the participating teams.

The ensemble model combines predictions from the individual models, leveraging their complemen-

tary strengths to achieve improved predictive accuracy. As shown in Table 6, the ensemble model

achieved the best test RMSE at 2210.37 and the lowest MAPE at 1.73%, both marked as the lowest
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Figure 10. Scatterplot of the actual takeoff weight and distance flown by aircraft type.

errors among the models tested. The actual RMSE values for each algorithm align closely with their

estimated test RMSE, indicating that the models generalize well to unseen data.

Among individual models, CatBoost achieved the lowest test RMSE at 2215.53 and MAPE of 1.75%,

closely followed by LightGBM and XGBoost, which also demonstrated competitive RMSE andMAPE

performance. Although the MLPmodel performed reasonably, it showed a slightly higher RMSE and

MAPE compared to the gradient-boosted models, highlighting the effectiveness of GBDT models on

tabular data for this task. As one can see, all of them significantly outperform the baseline.

Using our best model (Ensemble), we calculated the RMSE for each aircraft type, presented in Table

7. RMSE values vary significantly across different aircraft categories, indicating that model perfor-

mance depends notably on aircraft type. For instance, larger aircraft such as B752, B77W, B789, and

A359 exhibit higher RMSE values. Conversely, smaller aircraft types, including A319, AT76, and

CRJ9, have lower RMSE values, suggesting the model predicts their takeoff weights more consis-

tently.

3.3 Feature Importance Analysis

Figure 11 presents the top 20 feature importances obtained from the trained CatBoost model, which

achieved the best individual performance among the models tested. These importances were com-

puted using the PredictionValuesChange method [20], indicating the average change in prediction

if a feature’s value is altered. As expected, aircraft features are among the most critical predictors

overall. We also notice a significant contribution of the airline feature, emphasizing the impact of

different operational policies and preferences on fuel loading. Regarding the trajectory features, the

actual distance flown and the average en route altitude were the most important predictors, high-
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Table 6. Comparison of best hyperparameters, RMSE (estimated and actual), and Estimated MAPE for XGBoost, CatBoost,
LightGBM, MLP, SAINT, and the Ensemble models. The best RMSE and MAPE values are highlighted in bold and blue.

Algorithm Best Hyperparameters Estimated Test
RMSE Actual RMSE Estimated Test

MAPE

Baseline
(MTOW) – 32,324.13 32,324.13 26.10%

MLP hidden_layers_size=[400, 300,
200], learning_rate=0.003

3,864.1 3,864.2 4.54%

SAINT hidden_layers_size=[900, 400,
300], learning_rate=0.002

3,921.3 3,921.5 4.63%

CatBoost

learning_rate=0.01,
reg_lambda=69.07,

random_strength=16.35,
depth=11, min_data_in_leaf=2,
leaf_estimation_iterations=7

2,215.53 2,224.69 1.75%

LightGBM

learning_rate=0.01,
reg_lambda=0.46,
reg_alpha=0.17,

min_child_weight=4,
max_depth=13,

colsample_bytree=0.60,
subsample=1.0

2,506.43 2,519.17 2.50%

XGBoost

subsample=1.0,
reg_lambda=0.46,
reg_alpha=0.17,

min_child_weight=4,
max_depth=13, gamma=0.44,

colsample_bytree=0.6

2,413.05 2,403.07 2.42%

Ensemble
weighted average=[1.24e-23,
1.63e-23, 8.65e-01, 4.77e-22,

1.34e-01]
2,210.37 2,217.75 1.73%

lighting the influence of the horizontal and vertical profiles on fuel burn. A complete description of

the features used can be found at the code repository.

3.4 Ablation Study

We present a comprehensive ablation study to quantify the impact of various feature groups and

model components on the predictive performance of our ATOW estimation model. The ablation

study is a systematic experimental procedure used to evaluate the contribution of different compo-

nents in a complex model or system. In machine learning, it involves removing or “ablating” specific

parts of a model (such as feature groups or algorithmic components) and measuring the resulting

change in performance. This methodology helps researchers identify which elements are most cru-

cial to the model’s effectiveness and which might be redundant. By quantifying the performance

degradation that occurs when particular components are removed, ablation studies provide valu-

able insights into the relative importance of each component, guide future model refinements, and

enhance interpretability. In our analysis, we employed this technique to assess the impact of differ-

ent feature groups and model components on the predictive performance of our ATOW estimation

model, using the RMSE as our evaluation metric.

The ablation process started with our optimal ensemble model as the baseline and our best model

when changing features. Features were categorized into five distinct groups: temporal, geographical,

aircraft characteristics, operational, and meteorological. Each group was sequentially removed from
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Table 7. Predictive performance of the ensemble model for each aircraft type.

Aircraft type RMSE

A20N 1551.050

A21N 1733.565

A319 661.890

A320 1352.748

A321 1523.766

A332 3634.151

A333 4259.399

A343 4620.041

A359 5205.715

AT76 745.615

B38M 1765.090

B39M 1729.392

B737 1642.344

B738 1757.256

B739 1756.691

B752 11893.238

B763 3906.629

B772 4779.708

B77W 5456.838

B788 4712.170

B789 5158.968

BCS1 1415.357

BCS3 1492.246

CRJ9 819.703

E190 1169.980

E195 1247.490

the feature set, and the model was retrained and evaluated. Additionally, we assessed the impact of

eliminating individual algorithms from the ensemble.

Table 8 presents the results of the ablation study, showcasing the RMSE values and percentage

changes relative to the baseline model for each ablated configuration.

For clarity, the feature groups used in the ablation study correspond to specific subsections in the

Feature Engineering section. The Temporal Features group refers to features described in Section

2.3.2, including hour of departure, day of the week, month, season, and other time-related attributes

that capture cyclical patterns in flight operations. The Geographical Features group encompasses

elements detailed in Section 2.3.4, including airport distances, altitude differences, regional classifica-

tions, and spatial relationships that provide geographical context to flight operations. Aircraft Char-

acteristics features, as described in Section 2.3.6, include aircraft type parameters such as MTOW,

OEW, fuel capacity, and physical dimensions that define the fundamental capabilities and constraints

of each aircraft type. The Operational Features group combines elements described in Section 2.3.1

and in Section 2.3.2, encompassing flight trajectory features, vertical efficiency metrics, and other

operational parameters that characterize how the aircraft was flown. Finally, the Meteorological

Features group includes weather-related variables described within Section 2.3.1, such as tempera-
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Figure 11. Top 20 feature importances for CatBoost.

ture, humidity, and wind components, which influence both flight planning and actual performance.

This categorization enables a systematic assessment of how different feature domains contribute to

the model’s predictive performance, allowing us to quantify the relative importance of each feature

group in accurately estimating aircraft takeoff weight.

Table 8. Ablation study results

Ablated Component RMSE Change in RMSE (%)

Baseline (Full Model) 2,210.37 0.00%
Temporal Features 2,354.97 +6.54%
Geographical Features 2,390.26 +8.14%
Aircraft Characteristics 2,266.96 +2.56%
Operational Features 2,759.18 +24.83%
Meteorological Features 2,249.29 +1.76%
XGBoost Algorithm 2,213.91 +0.16%
CatBoost Algorithm 2,969.49 +33.90%
LightGBM Algorithm 2,210.37 +0.00%
Neural Network 2,210.37 +0.00%
SAINT 2,210.37 +0.00%

The ablation study shows that the operational features processed from the ADB-S data exert the

most substantial influence onmodel performance, with their removal resulting in a 24.83% increase in

RMSE (from 2,210.37 to 2,759.18). This significant degradation in performance shows the crucial role

of operational parameters in accurate ATOW prediction. Among the algorithmic components, the

CatBoost algorithm demonstrates the highest individual impact when removed from the ensemble,

as its removal leads to a substantial 33.90% increase in RMSE, given that it has the highest weight

and the most contribution to the ensemble’s predictive capability.

Geographical and temporal features also show notable importance, with their removal causing RMSE
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increases of 8.14% and 6.54%, respectively. This indicates that spatial and temporal context provides

valuable information for ATOW prediction, though not as critical as operational characteristics.

Aircraft characteristics contribute moderately to the model’s performance, with their exclusion re-

sulting in a 2.56% increase in RMSE.

Interestingly, meteorological features show relatively minimal impact, with only a 1.76% increase in

RMSE when removed. This suggests that while weather conditions do influence ATOW predictions,

their effect is less pronounced compared to other feature groups in our model.

In the context of model components, the results reveal varying degrees of importance among the

different algorithms. While the removal of CatBoost significantly impacts performance, the XGBoost

algorithm shows minimal effect (0.16% RMSE increase). The unchanged RMSE values (0.00% change)

for LightGBM,Neural Network, and SAINT algorithms suggest these componentsmight benefit from

further optimization or may be redundant in the current ensemble configuration, and thus pruned.

These findings show the importance of careful feature engineering in ATOW prediction, particu-

larly regarding operational parameters and geographical-temporal contexts. They also validate the

efficacy of our ensemble approach, while highlighting potential areas for optimization, especially in

the selection and integration of other different algorithmic components.

4. Conclusion

This study aimed to predict the aircraft’s actual takeoff weight by employing machine learning

techniques on large-scale open aviation data. We demonstrated that accurate predictive models

can be developed for this essential operational parameter through extensive experimentation with

various algorithms and feature engineering strategies. The results indicated that ensemble models

combining CatBoost, LightGBM, XGBoost, and artificial neural networks achieved the best overall

performance, with a root mean squared error of 2,217.75. Among individual models, the CatBoost

algorithm was the strongest performer, achieving an RMSE of 2,224.69. The analysis shows the

effectiveness of gradient-boosting methods in this domain.

The investigation into the importance of features revealed that aircraft type, airline and flight pro-

file characteristics are essential in predicting takeoff weight. Incorporating detailed aircraft data

significantly enhanced model performance, emphasizing the value of leveraging supplementary in-

formation beyond conventional aircraft type and category features. The ablation study confirmed

that feature engineering was critical in improving accuracy, with distinct feature groups contribut-

ing uniquely to model effectiveness. These findings suggest that a rich feature set, including precise

aircraft and operational characteristics, is essential for building reliable models in aviation data con-

texts.

The current approach, while promising, has several limitations. The reliance on purely data-driven

models does not fully account for the aerodynamic and operational complexities inherent in air-

craft weight estimation. Additionally, gaps in data coverage, mainly due to limitations in ADS-B

signals, may affect model generalization across diverse geographical regions. Future research could

address these challenges by incorporating analytical models that draw on aerodynamic principles

and operational knowledge, integrating physics-based insights with machine learning. Such inte-

gration could provide physical constraints that enhance the reliability of the models. Additionally,

exploring supplementary datasets, such as detailed aircraft specifications, meteorological data, and

operational parameters, could further enrich feature sets, leading to more accurate predictions. Ex-

ploring advanced machine learning architectures and optimization methods could also contribute

to refined predictions. Evaluating model performance across diverse operational conditions and ex-

tending the methodology to include other flight phases would enhance the applicability of these
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models in real-world air traffic management.

This work contributes to the broader aviation research community by demonstrating that machine

learning methods can estimate aircraft takeoff weight using openly available data, achieving good

performance. The developed models and methodologies lay a foundation for further advancements

in aircraft weight estimation, with potential applications covering trajectory prediction and opti-

mization and aviation’s environmental impact assessment.
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