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Abstract— The fast-growing demand for fully autonomous
aerial operations in shared spaces necessitates developing
trustworthy agents that can safely and seamlessly navigate in
crowded, dynamic spaces. In this work, we propose Social Robot
Tree Search (SoRTS), an algorithm for the safe navigation
of mobile robots in social domains. SoRTS aims to augment
existing socially-aware trajectory prediction policies with a
Monte Carlo Tree Search planner for improved downstream
navigation of mobile robots. To evaluate the performance of
our method, we choose the use case of social navigation for
general aviation. To aid this evaluation, within this work, we
also introduce X-PlaneROS, a high-fidelity aerial simulator,
to enable more research in full-scale aerial autonomy. By
conducting a user study based on the assessments of 26 FAA-
certified pilots, we show that SoRTS performs comparably
to a competent human pilot, significantly outperforming our
baseline algorithm. We further complement these results with
self-play experiments, showcasing our algorithm’s behavior in
scenarios with increasing complexity. [Code]1| [Video]2

I. INTRODUCTION

A social robot strives to synthesize decision policies that
enable it to seamlessly interact with humans, ensuring social
compliance while attaining its desired goal. While marked
progress has been made in social navigation and motion
prediction [1]–[3], achieving seamless navigation among
humans while balancing social and self-interested objectives
remains challenging. Social navigation can be formulated as
a Partially Observable Stochastic Game (POSG) [4], [5].
Deep Reinforcement Learning (DRL) methods [6] explic-
itly formulate the POSG reward to derive a policy from
simulated self-play experiments. While such techniques are
promising in sparse-data domains where the robot is easily
distinguishable from human, tuning reward parameters for
homogeneous navigation among humans is not trivial [7].
DRL policies are also a function of the underlying simulator,
which often translates to undesirable behavior with the sim-
to-real transfer owing to the lack of compatibility with real-
world scenarios.
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Fig. 1: The flight simulator setup used in our user study
where, in randomly selected order, each User interacted with
our Human pilot, SoRTS and the Baseline. The figure also
shows a resulting interaction between a User and SoRTS.

On the other hand, data-driven approaches are common in
social trajectory prediction. They aim to directly characterize
human interactions observed in the data [2], eliminating the
need for reward shaping and accurate simulations. Recent
sequence-to-sequence models, for instance, have achieved
promising results in intent prediction [8]–[10]. However,
using these models for downstream navigation is difficult as
they often suffer from prediction failures [11] which hurt
their generalization capabilities. This potential for unsafe
behavior prompts the need for robustifying models deployed
in the real world.

In social navigation, the actions of one agent influence
those of another and vice-versa [4], [12]. This temporally re-
cursive decision-making intuition has been used for modeling
human-like gameplay [13], [14]. Leveraging this insight, we
propose using a recursive search-based policy to robustify
offline-trained models with downstream social navigation
objectives. Specifically, we use Monte Carlo Tree Search
(MCTS) [15] as our search policy which provides long-
horizon recursive simulations, collision checking and goal
conditioning. We combine it with a socially-aware intent
prediction model to provide short-horizon agent-to-agent
context cues and motion naturalness. We use MCTS to
fuse these short-horizon cues with long-horizon planning by
including global reference paths to guide the tree expansion.
We refer to our framework as Social Robot Tree Search
(SoRTS).

The growing operations of Unmanned Aerial Vehicles are
leading to a demand for using airspace concurrently with
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human pilots [16], [17]. We, therefore, select the domain
of general aviation (GA) to showcase our approach. GA was
recently framed within the paradigm of social navigation [9],
[10], where pilots are expected to follow flying guidelines to
coordinate with each other and respect other’s personal space
to ensure safe operations. This is analogous to following
etiquette in human crowds and vehicular settings.

Safety-critical domains, like GA, demand high compe-
tence to guarantee seamless and safe operations. This entails
developing trustworthy robots which are able to understand
and follow navigation norms but also understand long-term
dynamic interactions to avoid causing danger or discomfort
to others. In this paper, we separate these aspects into two
axes, navigation performance and safety. We center our
framework design and evaluations around these two axes.
Through a user study conducted on a custom simulator
framework, X-PlaneROS, with 26 experienced pilots, we
investigate how pilots interact with our model in a realistic
flight setting. We further analyze how they gauge our model
along these axes as compared to a competent human pilot.
We also complement our evaluations with self-play experi-
ments in scenarios with increasing complexity.

Statement of contributions:
1) We introduce and open-source SoRTS, an MCTS-based

algorithm for long-horizon navigation that robustifies
offline learned socially-aware intent prediction policies
for downstream navigation.

2) We introduce X-PlaneROS, a high-fidelity simulation
environment for navigation in shared aerial space, and;

3) Through a user study with 26 FAA-certified pilots
and through self-play simulations in more complex
scenarios, we show that SoRTS is perceived comparably
to a competent human pilot in terms of navigation
performance and safety and significantly outperforms
its baseline algorithm.

II. RELATED WORK

A. Social Navigation Algorithms

Social navigation has a rich body of work focused on
pedestrian and autonomous driving domains [1]. In pedes-
trian settings, classical model-based approaches [18], [19]
have been proposed and remain prominent baselines. Yet,
their extension to other domains is non-trivial. Recent DRL
methods [6], [20], [21] that use handcrafted safety-focused
reward functions [22] have produced promising results in
these domains. However, shortcomings in simulator design
[23], and domain-specific reward functions limit real-world
performance [22]. Achieving scalability and robustness is
challenging, often requiring expensive retraining. Similar to
our approach, [5] introduces a DRL method that uses MCTS
to train and deploy policies. While their method relies on pre-
defined reward functions and simulator training, our work
extends these methods to use offline expert-based policies,
providing domain-specific treatment for social navigation.

Data-driven approaches focus on learning policies from
datasets that record interactions between agents [1], [22].

As these models do not need explicit reward construction,
they can capture the rich, joint social dynamics. However,
these methods are challenging to deploy directly owing to
noisy and missing demonstrations [24], [25]. To alleviate
this, [4] used the gradients of a Q-value function for Model
Predictive Control, and [12] proposed a generalization to
this method using dual control for belief state propagation.
These methods rely on Inverse Reinforcement Learning as
an additional step to generate the Q-value functions. Using
gradients from sequence models directly in optimizations
has also been proposed [26], but the convergence properties
were not examined. Our method is more direct in its use of
sequential models and calculating gradients or Q-values is
not required. Instead, we transform the model’s outputs into
action distributions for the downstream planning task.

B. Social Navigation Evaluation

Different metrics have been considered for the evaluation
of social robot navigation [1], [2], [27]. Some of the main
axes of analysis for evaluation include behavior naturalness
based on a reference trajectory or irregularity of the executed
path [28], [29], performance and efficiency [30]–[32], and
notions of physical personal space or discomfort [33], [34].
User studies are often conducted to evaluate more subjective
aspects such as the perceived discomfort and trust that a robot
induces during an interaction [35]. Following prior works,
we focus on navigation performance to measure our agent’s
smoothness and ability to follow navigation guidelines, and
safety to judge its ability to respect others’ personal space.
We also conduct a user study where we ask experienced
pilots to interact with our algorithm in a realistic flight setting
and rate the robot’s performance, perceived safety and trust.

III. PROBLEM FORMULATION

We formulate social navigation as an approximate POSG,
a framework for decentralized finite-horizon planning. For
more details about POSGs and their use within social nav-
igation, we refer the reader to [4], [5], [36].Following [9],
[10], we assume M agents with sit ∈ R3 representing state of
agent i at time-step t and ait ∈ A is the discrete set of actions
or motion primitives that follow ṡ = f(s,a). Let si0 and sig
represent the start and goal states respectively. The system
also has access to a set of offline expert demonstrations
D and set of global reference trajectories τR. We omit
superscripts to refer to the joint state for all agents.

Thus, given the set of start s0 and goal sg states of M
agents, the objective is to find a sequence of control inputs
π = {a0, . . . ,ag} such that the agents follow collision-free
trajectories τ = {s, · · · , sg}. The generated trajectories need
to ensure ||sit − sjt || ≥ d ∀i, j ∈ {1, . . . ,M} ∀t where
d is the minimum separation distance to satisfy the safety
objective. Furthermore, the trajectories also need to stay
close to reference trajectories min ||τ − τR|| to satisfy the
navigation objective and follow τ ∼ D to satisfy the social
objective. Without loss of generality, we assume first agent
(i=0) to be the robot ego-agent and at each time step execute
the optimal action.



Fig. 2: An overview of SoRTS, a Monte Carlo Tree Search (MCTS)-based planner for social robot navigation whose tree
search is guided by three components; a Social Module, a Reference Module and a Cost Map. The Social Module leverages
an offline-trained intent prediction model to characterize agent-to-agent interactions and predict a set of possible future
states for the ego-agent. The Reference Module provides the agent with the closest reference state from a global plan which
embodies navigation guidelines the agent must follow. The Cost Map encodes a global visitation map to further guide
navigation. MCTS uses all these modules to provide online collision checking and long-horizon simulations by searching
for choosing between different decision modalities.

IV. APPROACH

We designed SoRTS along the axes of navigation perfor-
mance and safety. The core insight of SoRTS is to use social
modules and global reference paths to bias the MCTS to
search for and choose between various decision modalities.
Fig. 2 shows an example of two aircraft merging on a single
path. Each aircraft can safely execute the merger by choosing
from three actions: forward, speeding up, and slowing down.
MCTS, in its forward simulations, not only prunes branches
that lead to future collisions but also uses the social module
to choose between cutting-in-front (socially undesirable)
and yielding (socially desirable), thereby producing socially
compliant and safe behavior.

A. Modules
SoRTS is a search-based planner which uses Monte Carlo

Tree Search (MCTS) whose tree expansion is guided by three
modules. First, a Social Module handles the short-horizon
dynamics in the scene, characterizing social interactions
and cues. Second, a Reference Module provides the agent
with a global navigation guideline, e.g., an airport traffic
pattern. Finally, a Cost Map encodes global value map.
MCTS uses these components together and provides collision
checking and long-horizon socially-compatible simulations.
Its corresponding pseudo-code is shown in Algorithm 1 and
2.

1) Social Module: We leverage an offline-trained intent
prediction algorithm parameterized in θ, Pθ(·), to account for
the short-term agent-to-agent dynamics following the expert
trajectories in D.

pθ(s
i
t,a

i
t) ∼ Pθ(a

i
t | st−tobs:t, s

i
g) (1)

where pθ(·) provides a distribution of future actions ait
for agent i conditioned on the past trajectories st−tobs:t of

all the agents and the goal sig where tobs is the observation
time horizon.

Here, we use Social-PatteRNN [10], an algorithm which
predicts multi-future trajectories from learned interactions
that exploit motion pattern information in the data.

2) Reference Path Module: Given the start and goal state
of agent i the algorithm samples a suitable reference trajec-
tory τ ir ∈ τR, line 1 in Algorithm 1. Similar to section IV-
A.1, this trajectory is used to compute a reference action
distribution pr(·),

pr(s
i
t,a

i
t) ∼ Pr(a

i
t|sit, τ ir) (2)

proportional to the L2 norm between s and τr at time t.
In Algorithm 2, the reference action is obtained in line 5.
τR can be drawn from expert distributions D, global path
planning algorithms like A-Star, logic specifications [37] or
can also be handcrafted.

3) Cost Map: The algorithm also uses a cost map of
the environment representing the value function, v(s). For
our case, we use the cost map to represent state visitation
frequency to bias the search towards more desirable areas.
Algorithm 2 uses the cost map in line 3. This value function
can be either learned, e.g., via self-play [5] or pre-computed
from a prior distribution and captures the value of the joint
state distribution.

B. Social Monte Carlo Tree Search

MCTS is a search-based algorithm that expands its tree
search toward high rewarding trajectories. In principle, this
is done by selecting nodes along the search that maximize
upper confidence bound [15], which balances the degree of
exploitation and exploration. SoRTS, leverages MCTS and
uses the components presented in the previous section to



guide its trajectory roll-outs. Formally, it follows the UCT
shown below,

U(s,a) = Q(s,a) + c1 · S(s,a) + c2 ·R(s,a) (3)

where Q(s,a) represents the expected value for taking action
a at state s; S(s,a) is visitation normalized component
according to the socially-aware module; R(s,a) is the visita-
tion normalized component according to the reference path;
c1 and c2 are hyperparameters. We drop the time t subscript
for ease of notation. In line 14 of algorithm 2, these values
follow the update:

Q(s,a) =
N(s,a) ·Q(s,a) + v(s)

N(s,a) + 1
(4)

R(s,a) =
N(s,a) ·R(s,a) + pr(s,a)

N(s,a) + 1
(5)

S(s,a) =

√
N(s)

N(s,a) + 1
· pθ(s,a) (6)

where N(s) is the state visitation count, and N(s,a) the vis-
itation given action a. These updates are done iteratively by
following the states within a time-budget, or until a new state
is found. At each time-step, a new forward simulation tree is
iteratively constructed by alternately expanding the agents’
future states in a round-robin fashion. Branches that lead to
collision states are pruned.3 At the end of planHorizon, the
ego agent takes the first action that maximizes the visitation
count in line 4 of Algorithm 1. The tree is reset and the
process continues till goal is reached.

Algorithm 1 SoRTS(s0, sg, θ, τR, v)

1: τr ← GetReferencePaths(s0, sg, τR)
2: while s0t ̸= s0g or timeElapsed ≤ planHorizon do
3: N(·)← SocialMCTS(st, sG, τr, θ, v, 0)
4: a0 ← argmaxa′∈A N(s0t ,a

′)
5: s0t+1 ← f(s0t ,a

0) ▷ Robot’s transition model.
6: end while

V. EXPERIMENTAL SETUP

Our experiments focus on assessing SoRTS along our axes
of interest, i.e., navigation performance and safety. As such,
this section describes the main aspects of our evaluation setup
and implementation details for our case study.

A. User Study

We recruited 26 FAA-certified pilots (14 private, 8 com-
mercial, 3 student pilots and 1 airline transport pilot), who
on average have 986 flight hours. Using the flight deck setup
and simulator shown in fig. 1, each pilot was asked to land
an aircraft on a specified runway. Simultaneously, a second
pilot was solving the same task, thus, requiring the pilot’s

3Note: In practice, for M > 2, we only use the ego-agent and the
closest agent to the ego agent for tree expansion. While the tree is explicitly
constructed only for two agents, pθ provides the high-level social context
for all the agents. This approximation preserves the real-time nature of the
algorithm and is shown to perform well in practice.

Algorithm 2 SocialMCTS(st, sG, τr, θ, v, p)
1: while p ≤ M do
2: if spt ̸∈ S(·) then ▷ New tree node
3: vs ← GetValue(v, st)

4: S(·)← GetSocialActionProbabilities(st, θ)

5: pr(·)← GetReferenceActionProbabilities(τp
r , s

p
t )

6: N(spt )← 1
7: return vs
8: end if
9: A′ ← CollisionCheck(A, d, st)

10: ap ← argmaxa′∈A′ U(spt ,a
′) ▷ See eq. 3

11: spt+1 ← f(spt ,a
p)

12: p ← p+1 ▷ Choose next agent to expand
13: SocialMCTS(s, sg, τr, θ, v, p)
14: Update(Q,R, S,N) ▷ See eq. 4 to 6
15: end while
16: return N(·)

coordination to land safely. Here, the second pilot was either
a human, SoRTS, or the baseline algorithm4.

Our experimental setup follows the design delineated next.
We followed a within-subject design in which each user
tests against each algorithm. We allowed the user to get
familiarized with the simulator and controls prior to the
tests. The pilots are spawned at a 10 km radius from the
airport, where their incoming direction is either north (N),
south (S), or west (W), defining six possible scenarios,
i.e., {(N,S), (S,N), (N,W ), (W,N), (S,W ), (W,S)}. The
algorithm order and scenario were selected randomly at the
beginning of the experiment. The scenario, the initial states
and final goals remained fixed throughout the three tests.

After each test, the user completed a 5-scale Likert ques-
tionnaire evaluating the second pilot along various factors
we deemed relevant for high navigation performance and
safety. Since operation in safety-critical domains demands
high competence, we also take an interest in understanding
which aspects the users prioritize for deeming a pilot as
trustworthy and competent. We, thus, ask users to also rate
how trustworthy and human-like they perceived the second
pilot, based on their interaction with them and their responses
along the axes of navigation and safety. We summarize
the components of our user study questionnaire in table I.
Finally, we also collected the trajectory data from each ex-
periment for further analysis using relevant metrics discussed
in section V-C.

B. Self-Play

We complement our user study with self-play simulations
to assess SoRTS and our baseline on a wider variety of
scenarios. The simulations follow a similar design as the user
study, but now allow each agent’s location to be anywhere
around the 10km radius to increase the number of possible
scenarios. We also consider multi-agent scenarios varying
from 2 to 4 agents. We randomly generate 100 episodes
for each setting, where in each episode an agent is deemed

4We use second pilot and algorithm interchangeably.



unsuccessful if it breaches a minimum separation distance,
or if it reaches a maximum number of allowed steps.

C. Metrics

To quantify the trajectory data collected in our user study
and self-play experiments along our axes of analysis, we
consider the metrics listed below;

1) Reference Error (RE): The Euclidean distance between
the agent’s reference trajectory and its executed path.

2) Loss of Separation (LS): The duration that two agents
break a minimum distance of each other. This metric
is relevant for the aviation domain [38], but is akin to
commonly used metrics for social robots in pedestrian
settings, e.g., personal space [1], [27].

D. Baseline

To showcase the benefits of SoRTS, we introduce a
baseline which naively chooses the next action by balancing
the reference and social values over the state-action space
following the equation below,

a = arg max
a′∈A

[
λ · pr(s,a) + (1− λ) · pθ(s,a)

]
where λ ∈ R : [0, 1] balances the importance we give to
pθ(·) and pr(·). This baseline translates to replacing line 3
and line 4 for the above equation in algorithm 1.

E. Simulator

To evaluate the proposed algorithm and enable future
research in the domain of full-scale aerial autonomy, we
introduce X-PlaneROS. The system combines two main com-
ponents via a ROS bridge, X-Plane-11 and ROS-Plane au-
topilot [39], enabling the use of high and low-level com-
mands to control a general aviation aircraft in realistic world
scenarios. X-Plane-11 is a high-fidelity simulator which
provides realistic aircraft models and visuals. ROS-Plane is
a widely accepted tool which provides reliable autonomous
flight control loops. Our simulator further adds support for
following a select set of motion primitives, as well as
visualization utilities that aid in tuning the control loops.
The documentation and source code is open-sourced5.

F. Implementation Details

The modules in section IV-A leverage TrajAir [9], a
dataset consisting of aircraft trajectory data collected in non-
towered terminal airspace; the Social Module uses TrajAir to
train its intent prediction module offline, where we followed
the training details in [10]. We also use TrajAir to build a
library of FAA-abiding paths used by the Reference Module.
Finally, to build our cost map we discretized TrajAir’s flight
frequency based on aircraft poses and wind direction.

The action space, A, of our planner is comprised of the set
of 252 motion primitives for aerial navigation used in [37].
Empirically, we set planHorizon=10s in algorithm 2 and
the exploration parameters in the UCT equation to c1 = 2
and c2 = 5, and λ = 0.3 for the baseline planner.

TABLE I: We asked users to rate the second pilot along these
aspects of navigation performance and safety, and to rate it
along trustworthiness and humanness.

Navigation Performance Safety Was the second pilot...

Follow FAA Guidelines Collision Risk trustworthy?
Overall Flying Skill Comfort a human?
Flight Smoothness Cooperative

Abrupt
Predictable

VI. RESULTS

We now present our results and insights. For our analysis
below, a competent algorithm refers to one which performs
highly along the axes of navigation performance and safety.
We first examine the relevance of the factors in table I in
characterizing the trustworthiness of a competent algorithm.
Leveraging the results from our trustworthiness analysis, we
then perform a comparative analysis between SoRTS, the
baseline and our human pilot. Finally, we briefly explore
how pilots perceive human competence along the factors in
our questionnaire.

A. On competence and trustworthiness

As a means to determine how to better assess the compe-
tence of a robot, e.g., which metrics to prioritize, we compare
the factors in table I with the user’s perceived trust. We do so
via a Pearson’s correlation analysis with repeated measures,
whose results are summarized in table II.

We find strong correlations between trust and the compo-
nents within navigation performance, with flight smoothness
being the strongest one. Within safety, we see that comfort,
followed by predictability showed the strongest correlations.
Although one would expect for abruptness and collision risk
to be as crucial for rating trust. We find this result is, in
part, due to our experiments not being explicitly designed
to exhibit adversarial behavior. We also believe these results
showcase the strength of our model in unprecedented scenar-
ios. As said earlier, because data-driven models can heavily
misbehave when exposed to out-of-distribution states [11],
SoRTS is a means to augment these models online. Since,
the user study serves as a mechanism for testing our model in
settings that weren’t observed in the training data, the lower
correlation between the aforesaid components may indicate
robustness toward unsafe behavior.

B. On each algorithm’s competence

The previous section studied how each factor in table I
tied to the perception of a trustworthy pilot. This section will
now focus on providing a pairwise comparison between the
algorithms for both the user study and self-play, leveraging
the results obtained in the previous analysis.

1) User study: Leveraging the trustworthiness results in
table II, we compute each user’s average score over the
questions with highest correlations along each axis, i.e.,
for navigation performance, we compute the mean score

5Code for X-PlaneROS: https://github.com/castacks/xplane ros

https://github.com/castacks/xplane_ros


Fig. 3: User study results. Left: Examples of two experiments. Each row shows the resulting trajectories of a User interacting
with our Human pilot, SoRTS, and the Baseline. The top row shows a user that successfully followed the expected guideline;
we can see that the baseline did not fly as smoothly as SoRTS, and abruptly cut short close to the goal. The bottom row
shows a user that did not follow the expected guideline; our algorithm still managed to navigate properly, whereas the
baseline behaved erratically, unsafely crossing over the runway. Right: Box-plots showing the per-algorithm distribution
of the results from the user study: the top ones show the average scores given by the user for navigation performance (a)
and safety (b). The bottom ones show the average reference error (a) and loss-of-separation (b) metrics obtained from the
trajectory data.

TABLE II: Using repeated measures, we show the Pearson
correlations (R, p-value=0.05) for each factor listed in table I
vs. perceived trustworthiness and humanness.

Axis Factor Trustworthy? Human?

R p-value R p-value

Nav. Performance
Flight Smoothness 0.81 4.80e-19 0.08 0.47
Follow FAA Guidelines 0.76 2.99e-15 0.10 0.37
Overall Flying Skill 0.71 4.56e-13 0.15 0.20

Safety

Comfortable 0.92 3.55e-31 0.17 0.14
Predictable Behavior 0.77 5.19e-16 0.21 0.07
Cooperative 0.65 1.61e-10 0.06 0.62
Collision Risk -0.56 1.10e-07 -0.11 0.36
Abrupt -0.56 1.13e-07 -0.09 0.42

between following FAA and flight smoothness, and for safety
we use predictability and comfort. The scores are shown in
fig. 3, and the pairwise statistical differences using ANOVA
with repeated measures in table III. Here, we did not find
statistical evidence that the scores for the human pilot and
SoRTS were different, suggesting that the users rated their
competence similarly. Our results further show evidence that
our baseline was generally rated lower on both axes of
competence, while also exhibits more variance.

We then examine if the RE and LS metrics in section V-
C—which here tie to navigation performance and safety, re-
spectively—reflect the users’ assessments for each algorithm.
Thus, we compute them on the collected trajectories and
show their respective mean scores and statistical comparisons
in fig. 3 and table III. As before, we show the mean scores
for each algorithm in fig. 3 and the statistical results in

table III. For the RE metric, we find significantly different
results between the algorithms; wherein SoRTS yields higher
error compared the human pilot, but markedly lower than the
baseline and less variance than the other two. Similarly, the
LS metric computed at 0.5km, shows that generally neither
the human pilot nor SoRTS breach this distance. In contrast,
the baseline more frequently invades others’ personal space,
creating more situations for potential collisions.

TABLE III: Statistical significance between algorithmic pairs
for results in fig. 3 with t∗ ≥ 2.060 and p ≤ 0.05.

Algorithmic NP Safety RE LS

Pair t-val p-val t-val p-val t-val p-val t-val p-val

Baseline-Human 3.121 0.009 3.062 0.016 5.782 0.000 1.321 0.199

Baseline-SoRTS 3.018 0.009 2.626 0.022 2.105 0.011 0.397 0.694

Human-SoRTS 0.415 0.682 0.322 0.322 2.944 0.022 1.211 0.237

NP: Navigation Performance, LS: Loss of Separation, RE: reference error.

Figure 3 shows examples of trajectories from our experi-
ments. Each row represents one user vs. the three algorithms.
We show a reference trajectory along with the actual ex-
ecuted trajectory6. The top row shows an example where
the user performed successfully. In this experiment, we see
that the ablation unexpectedly cut short while approaching
the runway instead of following the traffic pattern, while
SoRTS did so smoothly and safely. The bottom row shows a
user that did not follow the standard traffic pattern. Despite

6Human pilots do not see the reference trajectory, but they see the map
in the simulator, and are instructed to follow the appropriate traffic patterns.



this, SoRTS manages to successfully complete the task, while
the baseline behaves erratically, not following the traffic
pattern and unsafely traversing the runway twice.

As per the user study, we conclude that SoRTS performs
comparable to a competent human pilot and significantly
better than the ablation, both as perceived by the users
and through our metrics. Our results further highlight the
benefits of using the long-horizon socially-aware simulations
via MCTS, as opposed to purely using a data-driven model
on the wild with a simple weighting over the objectives of
interest, leading to an erratic and unsafe behavior.

TABLE IV: Summary of the task performance of the baseline
and SoRTS’ agents in self-play.

# Agents Algorithm Success (%) Failure (%) RELS Timeout

2 Baseline 69.0 30.0 1.0 1.59

SoRTS 96.5 2.0 1.5 2.01

3 Baseline 48.3 49.3 2.4 1.55

SoRTS 89.7 8.3 2.0 2.01

4 Baseline 43.5 54.0 2.5 1.56

SoRTS 71.0 21.0 8.0 1.96

LS: Loss of Separation at 0.5km, RE: reference error for successful agents.

2) Self-play: We now analyze the performance of our al-
gorithm in more complex scenarios. The results summarized
in Table IV show the percentage of agents that were able
to land on the runway, i.e., successful agents, the agents
that were unsuccessful, due to either a loss of separation, or
because they exceeded the maximum allowed time. Finally,
we show the average reference error for successful agents.

Analyzing the table, we observe a decrease in task success
as the number of agents increases. Nonetheless, we can see
that SoRTS performs significantly better than the ablation
algorithm improving the task success by 28%, 46% and 38%
for the 2, 3 and 4 agent scenarios, respectively. We also find
that, the average reference error for SoRTS is higher than
the ablation. Though this error was computed on successful
agents only, we hypothesize that it being higher is due to
conflict resolution to avoid collisions with other agents.

C. On competence and human performance

Often arising debate, is the question of whether an al-
gorithm can pass as a human. However, in domains such as
aviation, where high competence is central, one would expect
for humans to be perceived as such. If so was the case, one
would strive for an algorithm to exhibit a performance similar
to that of a human. We study the aforesaid by asking users
to gauge whether the second pilot was a human based on
their assessments along table I.

Surprisingly, we find a marked disagreement within the
users’ responses to this question, with almost a 50-50% split
between the responses for the Human Pilot (14: No, 12: Yes)
and the Baseline (14: No, 12: Yes), whereas for SoRTS (8:
No, 18: Yes) more users perceived its performance as human-
like. Further, table II shows that the user’s assessments for

navigational performance and safety correlate weakly with
the humanness prediction. To explain this contrasting result,
we isolated the responses given to SoRTS from the other two,
and found that predictability had the highest correlation value
among all factors, with R=0.53 and p=0.01. In contrast, the
values for the Human pilot and the Baseline were R=0.22,
p=0.03 and R=-0.06, p=0.06, respectively. We believe this
result may suggest that because users generally perceived
the behavior of SoRTS as more predictable, they rated its
performance as human-like more frequently.

We believe this contrasting result does not affect our
analyses from the previous to sections, as we find that the
user’s responses for trustworthiness also correlate weakly
with their assessment of humanness, with R=0.26, p=0.02.
As such, we conclude that users value more their perception
of trust than the nature of type of agent they interact with.

VII. CONCLUSION

We present SoRTS, an algorithm for long-horizon social
robot navigation. SoRTS is a MCTS-based planner which
expands its search tree guided by an offline-trained intent
prediction model and a global path which embodies naviga-
tion guidelines. We introduce X-PlaneROS, a high fidelity
simulator for research in full-scale aerial autonomy. We use
it to conduct a user study with experienced pilots to study
our algorithm’s performance in realistic flight settings. We
find that users perceive SoRTS comparable to a competent
human pilot and significantly better than our baseline. In
self-play, we show that SoRTS outperforms the baseline by
28-46% as the complexity of scenarios increases. To the best
of our knowledge, this is the first work in social navigation
for general aviation and attempts to bring unique problems
in general aviation within the purview of the larger robotics
community.

We identify various avenues for future work. First, we
assumed task homogeneity, i.e., agents landing on the same
runway, whereas in a real scenario pilots with different
objectives may require to interact. Thus, future work includes
studying interactions with agents with heterogeneous tasks.
We also assumed perfect intent and state estimation. Accord-
ingly, robustifying prediction models with uncertainty- and
adversarial-awareness is another promising direction. Finally,
improvements on the scalability of the model, as well as
exploring other domains are also potential avenues.
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limitations of behavior cloning for autonomous driving,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 9329–9338.

[26] S. Schaefer, K. Leung, B. Ivanovic, and M. Pavone, “Leveraging
neural network gradients within trajectory optimization for proactive
human-robot interactions,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 9673–9679.

[27] Y. Gao and C.-M. Huang, “Evaluation of socially-aware robot navi-
gation,” Frontiers in Robotics and AI, p. 420, 2021.

[28] C. Mavrogiannis, A. M. Hutchinson, J. Macdonald, P. Alves-Oliveira,
and R. A. Knepper, “Effects of distinct robot navigation strategies on
human behavior in a crowded environment,” in 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE,
2019, pp. 421–430.

[29] A. J. Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and
D. Manocha, “Densecavoid: Real-time navigation in dense crowds
using anticipatory behaviors,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 11 345–11 352.

[30] S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell,
“Decentralized structural-rnn for robot crowd navigation with deep
reinforcement learning,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 3517–3524.

[31] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3052–3059.

[32] J. Liang, U. Patel, A. J. Sathyamoorthy, and D. Manocha, “Realtime
collision avoidance for mobile robots in dense crowds using implicit
multi-sensor fusion and deep reinforcement learning,” arXiv preprint
arXiv:2004.03089, 2020.

[33] E. Torta, R. H. Cuijpers, and J. F. Juola, “Design of a parametric
model of personal space for robotic social navigation,” International
Journal of Social Robotics, vol. 5, no. 3, pp. 357–365, 2013.

[34] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[35] J. Butler and A. Agah, “Psychological effects of behavior patterns of
a mobile personal robot,” Autonomous Robots, vol. 10, pp. 185–202,
03 2001.

[36] R. Emery-Montemerlo, G. J. Gordon, J. G. Schneider, and S. Thrun,
“Approximate solutions for partially observable stochastic games
with common payoffs,” in 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), 19-23
August 2004, New York, NY, USA. IEEE Computer Society, 2004,
pp. 136–143.

[37] J. J. Aloor, J. Patrikar, P. Kapoor, J. Oh, and S. Scherer, “Follow the
rules: Online signal temporal logic tree search for guided imitation
learning in stochastic domains,” arXiv preprint arXiv:2209.13737,
2022.

[38] T. Glozman, A. Narkawicz, I. Kamon, F. Callari, and A. Navot, “A
vision-based solution to estimating time to closest point of approach
for sense and avoid,” in AIAA Scitech 2021 Forum, 2021, p. 0450.

[39] G. Ellingson and T. McLain, “Rosplane: Fixed-wing autopilot for edu-
cation and research,” in 2017 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, 2017, pp. 1503–1507.


	Introduction
	Related Work
	Social Navigation Algorithms
	Social Navigation Evaluation

	Problem Formulation
	Approach
	Modules
	Social Module
	Reference Path Module
	Cost Map

	Social Monte Carlo Tree Search

	Experimental Setup
	User Study
	Self-Play
	Metrics
	Baseline
	Simulator
	Implementation Details

	Results
	On competence and trustworthiness
	On each algorithm's competence
	User study
	Self-play

	On competence and human performance

	Conclusion
	References

