
Received 13 August 2025, accepted 1 September 2025, date of publication 4 September 2025,
date of current version 10 September 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3605878

AsaFG: A Human-in-the-Loop Integration Module
for Air Combat Simulations
SAMARA R. SILVA 1,2, VITOR C. F. GOMES 1, ALESSANDRO O. ARANTES 1,
ANDRE F. M. CAETANO 1, VICTOR L. D. B. COSTA 1, ADRISSON R. SAMERSLA 1,
FELIPE L. L. MEDEIROS 1, YURI D. FERREIRA 1, MARCIA R. C. AQUINO 1,
AND JOAO P. A. DANTAS 1,2
1Instituto de Estudos Avançados, São José dos Campos, São Paulo 12228-001, Brazil
2Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 12288-900, Brazil

Corresponding author: Joao P. A. Dantas (jpdantas@ita.br)

This work was supported in part by the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil,
under Research Organization Registry (ROR) Identifier: 00X0ma614; and in part by the Funding Authority for Studies
and Projects (FINEP) under Finance Code 01.20.0196.00/2824/20.

ABSTRACT This work presents AsaFG, a human-in-the-loop integration module that connects the
Aerospace Simulation Environment (ASA), a constructive simulation environment for military scenarios,
with the FlightGear flight simulator. The module enables real-time interaction between human pilots and
simulated entities in air combat scenarios, allowing pilots to assume roles within simulated missions and
interact with autonomous agents. This integration enables direct interaction between constructive and virtual
components, contributing to more realistic and immersive air combat simulations. The work also discusses
key challenges during the integration process, including data exchange, control interfaces, and missile
modeling differences between the platforms. A specific contribution involves adjusting the missile model in
FlightGear to closely match ASA’s implementation, enabling consistent simulation behavior across systems.
Validation includes performance metrics and experiments with Brazilian Air Force pilots across three
operational scenarios. The results demonstrate the module’s applicability for training, operational analysis,
and studies on human-autonomy teaming in simulated air combat scenarios.

INDEX TERMS Autonomous systems, constructive simulation, virtual simulation, human-in-the-loop
simulation, simulation interoperability.

I. INTRODUCTION
Simulation is an essential tool in modern military planning,
analysis, and training because it allows the evaluation of
systems and missions without the risks and costs of real-
world operations [1]. In areas such as air combat, simulation
makes it possible to test mission strategies, analyze different
engagement situations, and support pilot preparation in safe
and controlled conditions [2].

As military operations become more complex and involve
the use of autonomous systems, it becomes increasingly

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu .

important to understand how humans and machines work
together in operational environments [3]. Human-in-the-loop
simulation is helpful in this context because it places a real
person inside the simulation, making it possible to evaluate
how humans interact with systems in realistic missions [4].
This kind of simulation helps researchers and developers
study human decision-making, workload, and cooperation
with autonomous-based systems.

Several constructive simulation systems have been created
to represent missions with multiple military units, including
vehicles, communication structures, and sensors [5]. These
systems are powerful for modeling high-level behavior, but
they usually do not allow direct interaction with a human

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 155821

https://orcid.org/0009-0000-5065-7236
https://orcid.org/0000-0003-3239-2160
https://orcid.org/0000-0002-9024-1902
https://orcid.org/0000-0001-5821-7729
https://orcid.org/0009-0002-4075-2840
https://orcid.org/0009-0005-4559-1849
https://orcid.org/0000-0001-8796-8230
https://orcid.org/0009-0003-2583-3076
https://orcid.org/0009-0006-5118-5764
https://orcid.org/0000-0003-0300-8027
https://orcid.org/0000-0003-1620-0560


S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

during the simulation. On the other hand, there are very good
virtual flight simulators, which offer detailed flight models
and visual interfaces [6], and are available as open-source
tools. Despite the use of interoperability protocols intended to
facilitate integration, achieving real-time interaction between
constructive and virtual simulations with human involvement
continues to be a significant technical challenge [7].

To address this challenge, this work presents the integra-
tion of the Aerospace Simulation Environment (ASA) [8],
a constructive simulation environment developed for military
applications, with FlightGear [9], an open-source flight sim-
ulator widely used for research and training. The integration,
referred to as AsaFG, enables human pilots to participate
in constructive mission simulations by controlling virtual
aircraft in real time and interacting with simulated mission
elements.

The main contribution of this work is to demonstrate
the integration between a constructive simulation platform
and a virtual flight simulator, highlighting the technical
challenges involved. We also present a validation process
based on computational performance and human-in-the-loop
experiments. The proposed approach was tested through a
series of experiments with Brazilian Air Force (FAB) pilots
in three distinct air combat scenarios. The results were used
to assess the realism, responsiveness, and overall feasibility
of the integrated simulation.

The remainder of this work is organized as follows:
Section II presents background on constructive and vir-
tual simulation, as well as human-in-the-loop concepts.
Section III reviews related work on simulation architectures
and human-machine collaboration. Section IV describes the
proposed integration methodology, including the validation
process. Section V presents the results obtained from the
validation experiments. Finally, Section VI concludes the
work and presents directions for future research.

II. BACKGROUND
This section provides an overview of the main simulation
tools and environments used in this work. It begins with
the constructive simulation frameworks used in this study,
which enable the modeling of large-scale military operations
involving multiple agents. Then, it presents the flight sim-
ulators employed for developing and evaluating autonomous
agents in air combat scenarios, highlighting their features and
integration capabilities.

A. CONSTRUCTIVE SIMULATION FRAMEWORKS
Constructive simulations are important tools for studying
complex military missions that involve several units work-
ing together, such as air combat operations [10]. These
simulations make it possible to test how aircraft, sensors,
communication systems, and decision-making processes
work, without the risks or costs of real missions. They are
nowwidely used in planning, training, and evaluatingmilitary
strategies [11].

One example is the Mixed Reality Simulation Platform
(MIXR) [12], a flexible and modular system originally
created for defense applications. It supports both con-
structive and virtual simulations and makes it possible to
connect and simulate different elements, such as aircraft,
weapons, and control systems. MIXR is often used for
planning missions, creating wargame scenarios, and testing
new ideas for military operations.

ASA, as mentioned in the introduction, is a simulation
environment developed by FAB to serve as a simulation ser-
vice for improving decision-making processes in operational
contexts [13]. It is based on the MIXR platform but extends
its capabilities with additional tools focused on research
and analysis of air combat scenarios. ASA includes specific
models for aircraft and missiles, tools to run large batches
of simulations, and a Python library, AsaPy [14], to analyze
results, calculate performance metrics, and test autonomous
agent models. The environment has been especially useful
in studies involving autonomous agents and decision support
systems in aerial missions [15], [16], [17], [18].

B. FLIGHT SIMULATORS
Flight simulators are integrated systems composed of soft-
ware and hardware components designed to emulate aircraft
and replicate realistic flight conditions. These systems
offer immersive experiences through precise environmental
rendering, intuitive cockpit interfaces, and realistic flight
dynamics. They are used in flight safety enhancement,
aircraft development, defense training, academic research,
and education [1].
While many high-fidelity simulators are used in certified

training environments, the demand for accessible flight
simulation software has grown within the research and enthu-
siast communities. Notable platforms include the already
mentioned FlightGear, X-Plane [19], and Microsoft Flight
Simulator [20]. Among these, FlightGear is particularly
notable for its open-source architecture, extensive documen-
tation, and flexibility, making it well-suited for integration
with autonomous systems and simulation-based research.

The FlightGear Flight Simulator (commonly abbreviated
as FlightGear or FGFS) is a cross-platform flight simulation
software used in research, education, industry, and for
personal use. As a free and open-source project, FlightGear
allows for extensive customization and continuous devel-
opment. It is compatible with major operating systems,
including Windows, macOS, and Linux, and features a
wide selection of aircraft models. Its global scenery is
automatically updated, enhancing immersion and realism [9].
A key component of FlightGear is its default flight

dynamics engine, JSBSim [6], [21]. JSBSim is a data-driven
model that utilizes aircraft configuration files, which define
geometry, propulsion, control systems, and other parameters,
to simulate aerodynamics in real-time. Its lightweight, flexi-
ble design has enabled its use beyond FlightGear, including in
applications such as theDARPAAlphaDogfight Trials, where

155822 VOLUME 13, 2025



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

autonomous agents performed simulated dogfights against
human pilots [22].

FlightGear also supports multiplayer functionality through
the FlightGear Multiplayer Server (FGMS), enabling multi-
ple aircraft to coexist in a shared virtual airspace. This feature
is essential for testing cooperative and adversarial scenarios
involving both human and autonomous agents.

X-Plane 12 was also investigated due to its broad adoption
in research and training applications. Developed by Laminar
Research, it is a proprietary simulator known for its high-
fidelity flight model, based on Blade Element Theory,
which calculates aerodynamic forces in real-time from
aircraft geometry [19], [23]. X-Plane supports multiplayer
functionality for up to 20 users over a local network, using
a host-client architecture in which one machine acts as the
server, redistributing aircraft state data among all connected
clients [24].
Additionally, the simulator provides access to internal

variables via DataRefs and the Data Input/Output system,
allowing for real-time reading and writing through the User
Datagram Protocol (UDP). This makes it particularly suitable
for integration with external hardware and sensors [23],
[24]. X-Plane also includes features that satisfy certification
requirements established by the U.S. Federal Aviation
Administration (FAA), allowing its use in FAA-approved
training devices [25]. However, such certification depends on
the specific combination of hardware and software. In this
work, X-Plane is used as a reference for comparison with
the open-source simulator FlightGear, which serves as the
primary simulation platform.

III. RELATED WORK
Combining constructive and virtual simulations has become
important for training and testing human-AI collaboration
in air combat scenarios. The concept behind Live–Virtual–
Constructive (LVC) simulations is to integrate real pilots,
virtual simulators, and computer-generated forces. This
allows for more complete training, helping pilots and AI
systems practice missions under realistic conditions [26].
Programs like the Air Combat Evolution (ACE), led

by DARPA, have worked to integrate autonomous agents
into air combat. In the AlphaDogfight Trials, autonomous
agents piloted F-16 simulators and defeated human pilots in
simulated dogfights, showing how AI can support air combat
operations [27].
Other research explores the use of autonomous Uncrewed

Aerial Vehicles (UAVs) to fly alongside piloted aircraft.
These ‘‘loyal wingman’’ projects aim to create teams where
human pilots and AI-controlled aircraft work together in
combat [28]. For instance, [29] proposed a hierarchical
reinforcement learning approach to enhance the decision-
making capabilities of loyal wingmen in complex aerial
combat scenarios, demonstrating improved coordination
between human pilots and autonomous agents.

More recently, new tools have made it easier to con-
nect flight simulators with machine learning environments.
Reference [30] created GymFG, a framework that connects
the FlightGear simulator with the OpenAI Gym interface,
making it easier to train autonomous agents in realistic flight
conditions. Reference [31] developed another framework
using JSBSim and Gymnasium to train reinforcement learn-
ing models for air combat simulation, facilitating the testing
of new strategies and designs.

FIGURE 1. AsaFG integration architecture.

While previous studies have focused on integrating
autonomous agents into virtual simulations or improving
decision-making in loyal wingman scenarios, our work
presents an integration of a constructive simulation envi-
ronment (ASA) with a virtual flight simulator (FlightGear),
allowing real-time interaction between human pilots and
autonomous systems in air combat scenarios. This integration
is important not only for better pilot training but also
for helping human pilots and autonomous systems operate
together during air combat missions, especially in modern
aerial warfare, where radar systems and advanced weapons
are key to mission success.

IV. METHODOLOGY
This section describes the methodological steps adopted
to integrate the ASA with FlightGear and to validate the
resulting system. The approach involved the design and
implementation of a communication architecture, adjust-
ments to existing simulation models, and a structured vali-
dation strategy that includes technical performance metrics,
behavioral consistency across systems, and feedback from
operational users. Each of these components is detailed in the
following subsections.

A. ARCHITECTURE
The objective of integrating ASA with the flight simulator is
to ensure behavioral consistency between both environments.
Within the ASA, the aircraft piloted by a human should
exhibit the same characteristics as ASA aircraft. Similarly,
within the flight simulator environment, the aircraft simulated
by the ASA must exhibit behavior that is indistinguishable
from that of the simulator’s reference aircraft. In essence,

VOLUME 13, 2025 155823



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

the simulator-controlled aircraft will emulate an ASA-native
aircraft in the ASA, while ASA-controlled entities will
emulate locally simulated aircraft within the flight simulator.

The integration of ASAwith X-Plane began as a promising
approach. Although X-Plane is not open-source, its use in
other virtual simulators within FAB suggests that future
integration could be more straightforward. However, specific
limitations in X-Plane’s multiplayer protocol prevented
successful integration. The simulator allows control via
DataRefs and the Input/Output system only for the primary
simulated aircraft or AI-generated aircraft. These AI aircraft
lack DataRefs for weapons systems and do not appear to other
participants in multiplayer sessions. Due to these restrictions,
the project shifted to using FlightGear. As an open-source
platform, FlightGear grants full access to its data packet
structure, making it possible to translate ASA data into the
FlightGear communication protocol.

Figure 1 presents the architecture for integrating ASAwith
FlightGear. FGMS coordinates communication between the
ASA system and the n instances of FlightGear by receiving
and distributing data packets. Upon receiving a packet, FGMS
forwards it to all connected instances except the sender.
Additionally, ASA transmits simulation data to Tacview,
a software platform that supports the recording, playback, and
analysis of flight data from both simulated environments [32].

B. COMMUNICATION PROTOCOL
Integrating ASA with FlightGear requires clearly defined
rules and standards for exchanging data between the two
systems and the FGMS server. These rules collectively form
the communication protocol.

The FlightGear multiplayer protocol encodes messages
using the External Data Representation (XDR) format
and transmits them over the network via UDP protocol.
It organizes the message into three components: header,
position message, and properties [33].

The first two parts of the protocol are well-defined, and
the variables within each field remain consistent regardless
of the aircraft model used. The main challenge lies in
interpreting the values of each property in the third part of
the protocol. Since each aircraft model may define a different
set of properties, and the FlightGear multiplayer protocol is
sufficiently generic to allow developers significant flexibility
in choosing which properties to use for transmitting variable
values, identifying the variable corresponding to each value
can be difficult, especially when the chosen aircraft model
lacks proper documentation.

Some properties are clearly defined in the protocol, such
as the left aileron position (surface-positions/left-aileron-pos-
norm) and the landing gear position (gear/gear[0]/position-
norm), among others. However, for many properties, it is
not possible to directly determine the variable or subsystem
associated with the property’s value. One example is
sim/multiplay/generic/string[i], where i denotes the index of
an array. This ambiguity also applies to variables of types
such as float, int, short, and bool [33].

Unlike FlightGear, which uses a proprietary commu-
nication protocol, ASA adopts the Distributed Interactive
Simulation (DIS) protocol. DIS provides a standardized
infrastructure for integrating heterogeneous simulations,
enabling the creation of sophisticated virtual environments
for interactive operations. The protocol supports interoper-
ability across systems, technologies, products, and platforms
from multiple vendors, encompassing computer-controlled
virtual entities, human operators, live systems, and auto-
mated simulations. DIS originated from DARPA’s SIMNET
program, which was developed for real-time distributed
combat simulation, and evolved through a series of biannual
workshops initiated in 1989 that established industry-wide
interoperability standards. These efforts culminated in the
publication of multiple IEEE standards for distributed
interactive simulation [34].
Since the implementation of the necessary architecture

to support the DIS protocol in FlightGear has not been
completed [35], ASA handles protocol compatibility during
the reception and transmission of messages by adapting them
to the FlightGear protocol format. The flowchart illustrating
this compatibility process is shown in Figure 2.

FIGURE 2. Decoding workflow of incoming FlightGear messages.

ASA employs two separate threads to manage protocol
compatibility. Since the message transmission frequency in
FlightGear may differ from ASA’s processing frequency,
the first thread is responsible for receiving messages and
storing the data in a buffer. The second thread handles
message processing, which includes data decoding and
the construction of the corresponding Protocol Data Units
(PDUs). It is important to note that the encoding and
decoding procedures follow the implementation found in the
FlightGear source code, as referenced in [36].

The FlightGear multiplayer protocol handles missile data
differently from the ASA protocol. Unlike ASA, it does not
treat the missile as an independent entity and instead encodes
missile-related data as properties of the aircraft. Figure 3
illustrates how ASA transforms each part of the received
message. Upon receiving a message from FlightGear, ASA
processes the data and may generate up to three types
of Protocol Data Units (PDUs). It always generates an
Entity State PDU for the aircraft. If the message includes
missile data for the first time, ASA creates a Fire PDU. For
subsequent messages about the same missile, it generates an
Entity State PDU for the missile. If the message indicates
a successful hit, ASA issues a Detonation PDU. Due to the

155824 VOLUME 13, 2025



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

FIGURE 3. Protocol translation between FlightGear and DIS.

arbitrary structure of the selected F-16model [37], the system
transmits missile-in-flight and hit data using the properties
sim/multiplay/generic/bridge[i], where i equals 18 and 19,
respectively.

To avoid losing critical missile-related information, the
system stores themost recent aircraft positionmessages in the
buffer shown in Figure 2, along with messages that contain
in-flight weapon data or missile hit data for each missile
already launched in the simulation. During processing, the
system always selects the latest aircraft position message and
combines it with the relevant property sections of buffered
messages that include missile data. The system does not
need to process every position message from the aircraft and
missile, since both ASA and FlightGear use dead-reckoning
algorithms. These algorithms estimate an entity’s location
based on known or estimated velocity and course direction
over time [38].
Figure 4 illustrates the conversion of PDUs to the

FlightGear multiplayer protocol. To generate a message for
FlightGear, the process uses data from one to three PDUs.
Although it does not transmit the Fire PDU, the system
uses its information during the encoding process to organize
missile identifiers, source aircraft, and target aircraft.Missile-
related messages are stored and appended to the next aircraft
position message. Once the message packet is formatted
according to the FlightGear multiplayer protocol, it is sent
over the network via UDP to the FGMS.

Tables 1, 2 and 3 present the structure of the PDUs
populated with data received from FlightGear for integration
into the ASA simulation. In most cases, position, orientation,
velocity, acceleration, and callsign information is preserved
as received or undergoes only a conversion process. Table 1
shows the PDU Header, which contains values either gen-
erated within ASA or selected to meet ASA’s requirements,
since these fields are not provided by the FlightGear protocol.

FIGURE 4. ASA-to-FlightGear message encoding process.

TABLE 1. Mapping PDU header fields with the FlightGear protocol.

TABLE 2. Mapping entity state PDU fields with the FlightGear protocol.

This approach is also applied to fill in missing fields in other
PDU types. Some parameters are assigned zero because they
are not relevant to the integration’s objective, which is to
maintain the flight dynamics and enable interaction between

VOLUME 13, 2025 155825



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

TABLE 3. Mapping detonation PDU fields with the FlightGear protocol.

TABLE 4. Mapping of FlightGear multiplayer protocol header fields
populated with ASA data.

TABLE 5. Mapping of aircraft position message fields in the FlightGear
multiplayer protocol populated with ASA data.

entities. It is worth noting that the Fire PDU contains data
very similar to the Detonation PDU; therefore, no separate
table was created to describe it.

TABLE 6. Mapping of missile position message fields in the FlightGear
multiplayer protocol populated with ASA data.

TABLE 7. Mapping of hit message fields in the FlightGear multiplayer
protocol populated with ASA data.

In the encoding process illustrated in Figure 4, ASA
populates the FlightGear protocol for transmission with the
data specified in Tables 4, 5, 6 and 7. The Header (Table 4)
contains fixed values obtained either from the FlightGear pro-
tocol documentation or from previously received messages,
ensuring consistency with the communication standard.
Within the position message (Table 5), only the model name,
lag, and pad fields remain fixed, while all other fields are
dynamically extracted from the ASA simulation. For the
missile and hit messages (Tables 6 and 7), the kind and
secondary kind fields are configured according to the F-16
model’s code documentation. Additionally, the hit message
always transmits fixed values for relative altitude, distance,
and bearing. This choice reflects the decision to let ASA
determine when total damage occurs, while still sending
values that ensure the FlightGear model processes the event
as complete destruction.

Finally, regarding the remaining FlightGear protocol
properties, these are used for visualization purposes or
for systems that fall outside the scope of this integration.
For such cases, fixed values obtained from a test-phase
FlightGear packet are sent. Nevertheless, even when fixed,
these values must remain consistent with the flight phase.
In this integration, all ASA flights start in cruise phase, which
means, for example, that the landing gear must be retracted.
Consequently, anyone reusing this code should consider the

155826 VOLUME 13, 2025



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

intended application and review the properties that were not
modified in this work.

C. MODELS ADJUSTMENTS
The selected F-16 model [37] includes both combat-related
equipment and sensors, as well as missiles configured for
short-range combat, specifically within visual range (WVR),
commonly known in aviation as dogfighting. In contrast,
ASA focuses on beyond visual range (BVR) combat.
BVR engagements take place beyond the pilot’s line of
sight, where decision-making depends on data provided
by available sensors and onboard systems [10], [39], [40].
In this scenario, the effectiveness of these systems, combined
with the pilot’s experience and skills, becomes critical for
mission success. For the integration process, the radar, radar
warning receiver (RWR), and missile were identified as
key components influencing combat outcomes. Therefore,
adapting and aligning these models is essential.

Implementing this compatibility brings about several
challenges, as the simulation flow in the two software
platforms differs significantly. An initial proposal involved
simulating these systems on only one platform and trans-
mitting the data to the other. However, this approach
risked generating excessive message traffic and would
have required changes to the FlightGear protocol. Another
alternative explored the possibility of modeling the sys-
tems on both platforms to ensure identical behavior, but
this approach also proved complex and required consid-
erable effort. Ultimately, the adopted solution focused on
making targeted modifications to the existing models to
approximate system behavior as closely as possible, while
accepting certain differences. The ASA repository [41]
provides documentation of all modifications applied to the
model.

In this context, several modifications were implemented,
including increasing the radar’s maximum range from 10 nm
to 35 nm and the RWR’s detection distance from 2.5 nm to
4.8 nm in FlightGear.

The missile’s detonation distance relative to the target
aircraft was modified to establish consistent thresholds for
total or partial damage across both platforms. Additionally,
parameters related to the missile’s flight dynamics were
adjusted in FlightGear. The FlightGear missile uses a
two-stage propulsion model, while the ASA model uses
only one stage. To harmonize the models, the second-
stage duration was set to 0 s, and the first-stage duration
was reduced from 10 s to 8 s, matching the value used
in the ASA model. Furthermore, the first-stage thrust
(thrust-lbf-stage-1) in FlightGear was reduced from
2,700 lbf to 2,200 lbf, a value determined through successive
evaluations until the peak velocities of both models were
aligned. Most of these changes were necessary because the
F-16 model used [37] was originally designed for short-
range combat, in contrast to ASA, which focuses on BVR
engagements.

D. VALIDATION PROCESS
The validation process was structured to verify both the
technical correctness and operational applicability of the
proposed integration between ASA and FlightGear. Three
complementary strategies were adopted: (i) performance
evaluation of the communication mechanism, (ii) compara-
tive testing of missile model behavior across systems, and
(iii) user-based assessment involving real fighter pilots. This
multi-level validation aimed to ensure that the integrated
system is not only functionally accurate but also suitable for
practical use in realistic air combat simulation scenarios.

FIGURE 5. Time measurement of the decoding process.

1) COMPUTER INTEGRATION METRICS
In addition to evaluating visualization, interaction capa-
bilities, and behavior consistency, the validation process
examined the impact of communication latency, focusing on
the data encoding and decoding stages. The measurement
focused on quantifying the additional latency introduced
by the integration during message exchange. This involved
calculating the time from when a message in FlightGear
format leaves the buffer to when it is sent to ASA in PDU
format. This interval represents the time required to perform
the decoding steps illustrated in Figure 5. The encoding
process was also monitored to evaluate its impact on the
overall communication latency.

We focused exclusively on latency as a performance
metric because the integration code does not introduce
computational complexity that would raise concerns about
CPU usage. Memory consumption is also not a limiting
factor, since the buffer stores only a single message per
simulated aircraft in FlightGear, with each message having
a maximum size of 1200 bytes.

2) MISSILE VALIDATION
The adjustments made to the missile model in FlightGear
were validated to verify whether the modifications applied to
the original FlightGear model (FlightGear-Base) resulted in
an adjusted model (FlightGear-Adjusted) that is compatible
with the ASA missile model, which has already been
validated in several studies [42], [43], [44], [45].

VOLUME 13, 2025 155827



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

A test suite was established for this validation. Two
scenarios were defined for the tests. In the first scenario
(SC-1), an aircraft simulated in FlightGear launches missiles
toward an aircraft simulated in the ASA. In the second
scenario (SC-2), the roles are reversed: the aircraft simulated
in the ASA launches missiles against the aircraft simulated
in FlightGear. In both scenarios, at the moment of missile
launch, the aircraft was flying at an average altitude of 20,000
feet and an average speed of Mach 0.8.

Figure 6 illustrates these scenarios, in which a red aircraft
can be observed launching a missile towards a blue aircraft.

FIGURE 6. Example of a missile launch conducted to validate the
adjustments made to the missile model in FlightGear.

The SC-1 scenario was used to collect data from
the FlightGear-Base and FlightGear-Adjusted
models. For data collection of the ASA missile model, the
SC-2 scenario was employed.

In each of these situations, 10 launches were conducted,
and data such as velocity (Mach), roll, and pitch were
recorded.

3) USER EVALUATION
To evaluate the proposed integration from a user-centered
perspective, a validation process was conducted with five
experienced fighter pilots from FAB. The objective was to
assess the robustness and usability of the integration module
(AsaFG) between ASA and FlightGear during operationally
relevant tasks.

Three distinct scenarios were designed to represent key
mission profiles:

• Attack (Q1–Q5): The pilot must intercept and neutral-
ize an intruding aircraft threatening a designated friendly
airspace zone. The scenario simulates defensive counter-
air operations, requiring rapid target acquisition and
engagement.

• Evasion (Q6–Q10): The pilot defends a high-value
asset while evading multiple incoming missiles. This
scenario highlights the importance of utilizing onboard
defensive systems, maintaining situational awareness,
and executing evasive maneuvers to survive in a
contested environment.

• Formation (Q11–Q15): The pilot participates in a low-
altitude formation flight composed of four aircraft. The
mission involves terrain-following navigation to reduce

radar detectability and reach a designated target area
for strike operations. Success depends on maintaining
formation integrity and synchronized maneuvering.

Figure 7 presents visual representations of the three
mission scenarios discussed above.

After each scenario, participants answered five questions
evaluating the integration’s effectiveness, realism, and usabil-
ity. At the end of all three missions, an additional set of five
general questions (Q16–Q20)was presented to gather broader
feedback regarding the integration of ASA and FlightGear.
All responses were collected using a five-point Likert-type
scale [46], totaling 20 items per participant.

Table 8 presents the full list of questions grouped by
category. In the results section, we present the mean and
standard deviation of responses for each question, followed
by an aggregate analysis per category (Attack, Evasion,
Formation, and General). For each group, we also compute a
95% confidence interval (CI) using the t-distribution, which is
appropriate when the sample size is small and the population
standard deviation is unknown, as recommended in standard
statistical analysis practices [47].

This qualitative evaluation complements the technical
validation stages and provides practical insights into the
operational reliability and user perception of the integrated
system. Feedback from the pilots serves as a key indicator
of the system’s readiness for use in human-in-the-loop
simulations and mission planning applications.

V. RESULTS
This section presents the results obtained from the three
validation strategies described in Section IV. The first part
focuses on the performance of the integration code, analyzing
encoding and decoding times between ASA and FlightGear.
The second part evaluates the behavior of the missile models
to determine the degree of similarity between ASA and
FlightGear after adjustments. Finally, the third part provides
the results of the user evaluation with FAB fighter pilots,
highlighting their perceptions of system integration, realism,
and usability across different mission scenarios.

A. COMPUTER INTEGRATION METRICS
Table 9 shows consistently low execution times, particularly
for the encoding process involved in sending messages from
ASA to FlightGear. This can be attributed to the fact that,
unlike decoding (FlightGear to ASA), the encoding step does
not involve variable transformations. Instead, it directly maps
ASA variables into the FlightGear protocol format, which
demands significantly less processing time.

Decoding requires multiple variable conversions to cor-
rectly instantiate PDUs with values in the appropriate units,
which increases processing time. This added computational
effort accounts for the higher average execution times
observed in Table 10. Additionally, decoding exhibited a
larger standard deviation, likely due to timing inconsistencies
in the queuing mechanism. Depending on when a message

155828 VOLUME 13, 2025



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

FIGURE 7. Representative frames of the evaluation scenarios: (a) Attack mission involving interception and engagement of an enemy aircraft, (b) Evasion
mission with the pilot avoiding multiple threats while radar coverage is illustrated by cones extending forward from each aircraft, and (c) Formation flight
at low altitude through mountainous terrain with the human pilot highlighted in green.

enters the queue, it may be processed immediately or delayed
until the next processing cycle, introducing variability in
execution times.

It is also important to consider that system clock requests
can introduce variability into the timing measurements,
potentially affecting the accuracy of recorded execution
times. Each time a program requests the current timestamp,
the call passes through multiple abstraction layers, from
user space to kernel space, before reaching the system
timer or hardware clock. This process adds overhead
that is generally insignificant for long-duration tasks but
becomes increasingly relevant when measuring events in the
millisecond or microsecond range [48]. Even minimal delays
caused by context switching, interrupt handling, or resource
contention can affect timing precision and introduce noise
into performance measurements.

Tables 9 and 10 show that the execution time for
both encoding and decoding processes does not correlate
directly with the number of aircraft simulated in either
ASA or FlightGear. Despite measurement uncertainties, all
observed values remain within acceptable bounds and do not
compromise the successful integration of the AsaFG. Since
the system transmits data at a frequency of 10 Hz, each
message is processed with a delay of less than one frame. This
level of latency does not affect the simulation’s consistency or
the user’s perception, and it satisfies the performance criteria
defined for this integration scenario.

B. MISSILE METRICS
Based on data collected from 30 missile launches using
the FlightGear-Base, FlightGear-Adjusted, and ASAmodels,
three variables were selected for the analysis: Mach number,
Roll, and Pitch. A graph was generated for each variable.
In these graphs, the solid line represents the mean value,
whereas the shaded region indicates variance. The horizontal
axis represents the time in seconds from the moment of
missile launch. In all graphs, the data obtained using the ASA
model are shown in blue, FlightGear-Adjusted in red, and
FlightGear-Base in yellow.

Figure 8 shows a graph of the Mach number. It can be
observed that during the first 8 seconds, the curves exhibited
similar behaviors. However, from that point onward, the
FlightGear-Base data diverge from those of the other two
models. This discrepancy is attributed to the presence of
a second propulsion stage in the FlightGear-Base missile
model, which is not present in the ASA model. By disabling
this stage and calibrating the timing and thrust values of
the first stage, the FlightGear-Adjusted curve was obtained,
which closely resembled the reference model, ASA.

FIGURE 8. Average mach values for missile launches using
FlightGear-Baseline (yellow), FlightGear-Adjusted (red) and the ASA
model (blue).

Although the FlightGear-Adjusted and ASA curves exhibit
similar behaviors, it is noted that in the initial 8 seconds,
the velocity of the ASA model is slightly higher than that
of the FlightGear-Adjusted model. However, starting from
9 seconds, the adjusted model displays a higher average
velocity, which persists until approximately 37 seconds into
launch. From that point on, the ASA model once again
demonstrated a higher velocity than the adjusted model. The
integrals of these curves were calculated to assess the impact
of these differences on the distance traveled by the missiles
in each model. The values obtained for FlightGear-Base,
FlightGear-Adjusted, and ASA were 23.29nm, 17.09nm, and
17.32nm, respectively. The difference in the average distance

VOLUME 13, 2025 155829



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

TABLE 8. Evaluation questions answered by pilots, grouped by mission
category.

TABLE 9. Encode and decode execution time vs. number of simulated
aircraft in ASA.

traveled between the FlightGear-Adjusted missile and ASA
missile was approximately 1.31%.

TABLE 10. Encode and decode execution time vs. number of FlightGear
aircraft.

Figure 9 shows the data obtained for the Roll variable. It is
noteworthy that the FlightGear-Base model exhibited signif-
icant roll variation, particularly during the second propulsion
stage (t > 8s). After adjustments to this model, such variation
was no longer observed, resulting in the FlightGear-Adjusted
model being very similar to the ASAmodel. Additionally, the
scale of the data is worth highlighting: the roll values remain
very close to zero, even in the original FlightGear model.

FIGURE 9. Average roll values for missile launches using
FlightGear-Baseline (yellow), FlightGear-Adjusted (red) and the ASA
model (blue).

The Pitch data are shown in Figure 10. This angle
represents the upward and downward motions (lofting) of
the missile. In the ASA model, this movement was more
pronounced than in the FlightGear models. Nevertheless,
the overall behavior was similar among models, with the
main differences in the intensity and variability of the values
observed.

FIGURE 10. Average pitch values for missile launches using
FlightGear-Baseline (yellow), FlightGear-Adjusted (red) and the ASA
model (blue).

C. PILOT EVALUATION METRICS
This subsection presents the evaluation of the ASA and
FlightGear integration based on the responses of five experi-
enced fighter pilots from FAB. The evaluation was conducted

155830 VOLUME 13, 2025



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

FIGURE 11. Captured views during the user evaluation: (a) Inside the FlightGear cockpit from the pilot’s perspective, (b) analyst interaction during
system testing, and (c) External TacView view, as seen by the pilot, showing the scenario in real-time.

through hands-on testing and post-scenario questionnaires.
Figure 11 illustrates key perspectives from the user evaluation
sessions, including the pilot’s viewpoint in FlightGear,
interaction with an analyst during the test, and external
visualization in TacView.

The questionnaire consisted of 20 Likert-scale questions
divided into four categories: Attack (Q1–Q5), Evasion
(Q6–Q10), Formation (Q11–Q15), and General (Q16–Q20).
Table 11 displays the average score and standard deviation
for each question based on the five pilot responses. These
statistics offer a fine-grained perspective on the perceived
performance of the integration across various aspects of
simulation realism and interface usability.

TABLE 11. Mean score and standard deviation for each evaluation
question answered by the pilots.

To summarize the results more concisely, we aggregated
the responses by category and computed the mean score,
standard deviation, and the 95% CI using the Student’s
t-distribution with four degrees of freedom. This interval
indicates the range in which the true average score is expected
to lie with 95% confidence.

Regarding the operational scenarios, the highest-rated
category was Formation, with an average score of 4.40,

TABLE 12. Summary of pilot evaluations by mission category. Each value
is based on five questions answered by five fighter pilots.

suggesting that the integration was particularly effective in
supporting coordinated flight operations. Pilots consistently
reported that maintaining position and interpreting spatial
references in formation was easy, indicating strong visual
fidelity and consistency in flight dynamics for this scenario.

In the Attack category, the average score reached 4.28,
reinforcing that the interface elements and aircraft behavior
were generally appropriate for engagement missions. Some
variability in responses was observed, possibly due to
individual pilot preferences regarding missile guidance or
radar behavior.

The Evasion category received the lowest average score,
3.92, and exhibited the widest confidence interval. This
indicates a relatively more diverse perception among pilots.
Notably, question Q8 — related to aircraft response during
evasive maneuvers — had the lowest individual score,
averaging 2.80, suggesting that further refinement in evasive
control realism or feedback timing could improve user
confidence in this context.

The General Evaluation category also reached an average
score of 4.40, with relatively low variability across responses.
This reflects a stable and positive overall perception of
the integrated system’s usability, reliability, and potential
applicability in pilot-involved experiments.

Overall, the results demonstrate that the ASA-FlightGear
integration delivered a robust and credible simulation
experience, particularly in formation and general usage
contexts, while also highlighting specific areas, such as
evasive response fidelity, that could benefit from targeted
enhancements.

VI. CONCLUSION AND FUTURE WORK
This work presented AsaFG, a human-in-the-loop integration
module that connects the constructive framework ASA

VOLUME 13, 2025 155831



S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

with the FlightGear virtual flight simulator. The proposed
architecture enables real-time interaction between human
pilots and simulated agents in air combat missions, allowing
for the evaluation of human-autonomy teaming within
realistic operational contexts.

The validation process, which included performance
analysis, missile model comparison, and a pilot-centered
evaluation, confirmed the functional viability and operational
relevance of the integration. The system maintained low
latency throughout message processing, and the adjusted
missile model showed behavior closely aligned with ASA’s
native implementation. Pilot feedback was especially positive
in formation flight and general integration aspects, supporting
the system’s use for simulation-based training and opera-
tional studies.

Despite these encouraging results, the current version
of AsaFG presents limitations that must be addressed to
improve realism and applicability. These include the absence
of Identification Friend or Foe (IFF) mechanisms, the lack
of a communication link between ASA and FlightGear (e.g.,
data link), and the unavailability of countermeasure systems
such as chaff and flare. The system also lacks a web-based
interface to support broader accessibility andmission control.

Future work will address these gaps through the implemen-
tation of IFF and countermeasure modeling, integration of a
data link to enhance information flow between constructive
and virtual elements, and support for bomb deployment in
FlightGear with corresponding effects on ASA entities, such
as damage to buildings or ground targets. Usability will also
be improved with the development of a web interface and
additional data handling features, such as support for player-
generated inputs in FlightGear.

Beyond advancing AsaFG itself, we expect that the
methodology presented in this work can serve as a reference
for integrating other constructive frameworks with Flight-
Gear. By making the integration code publicly available,
we aim to support future initiatives that seek to combine open-
source virtual simulators with military simulation environ-
ments for research, development, and training applications.

SOURCE CODES
The adjusted FlightGear F-16model used in this study is pub-
licly available at https://github.com/ASA-Simulation/f16.
This version includes refinements to flight dynamics, system
behavior, and adjustments to radar, RWR, and missile
parameters for BVR combat.

The AsaFG integration module is also publicly available at
https://github.com/ASA-Simulation/AsaFG. This repository
contains communication scripts, protocol translation logic,
and setup instructions, facilitating reproducibility and further
development. The module was developed by extending
MIXR classes to implement the conversion from the DIS
protocol to the proprietary protocol employed by FlightGear.
Because it operates independently from ASA classes, it can
be applied to other applications utilizing the open-source
MIXR framework with little or no adaptation.

REFERENCES
[1] D. J. Allerton, ‘‘The impact of flight simulation in aerospace,’’ Aeronaut.

J., vol. 114, no. 1162, pp. 747–756, Dec. 2010.
[2] H. Zhang, Y. Wei, H. Zhou, and C. Huang, ‘‘Maneuver decision-making

for autonomous air combat based on final reward estimation and proximal
policy optimization,’’ Appl. Sci., vol. 12, no. 20, p. 10230, 2022.

[3] J. Y. C. Chen and M. J. Barnes, ‘‘Human–agent teaming for multirobot
control: A review of human factors issues,’’ IEEE Trans. Hum.-Mach. Syst.,
vol. 44, no. 1, pp. 13–29, Feb. 2014.

[4] P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. C. Chen, E. J. de Visser,
and R. Parasuraman, ‘‘A meta-analysis of factors affecting trust in human–
robot interaction,’’ Human Factors, J. Human Factors Ergonom. Soc.,
vol. 53, no. 5, pp. 517–527, Oct. 2011.

[5] D. D. Hodson, ‘‘Military simulation: A ubiquitous future,’’ in Proc. Winter
Simul. Conf. (WSC), Dec. 2017, pp. 4024–4025.

[6] J. Berndt, ‘‘JSBSim: An open source flight dynamics model in C++,’’ in
Proc. AIAA Model. Simul. Technol. Conf. Exhib., Aug. 2004, p. 4923.

[7] W. J. Bezdek, J. Maleport, and R. Z. Olshan, ‘‘Live, virtual & constructive
simulation for real time rapid prototyping, experimentation and testing
using network centric operations,’’ in Proc. AIAA Model. Simul. Technol.
Conf. Exhibit, Honolulu, HI, USA, 2008, Paper AIAA-2008-7090,
doi: 10.2514/6.2008-7090.

[8] J. P. A. Dantas, A. N. Costa, V. C. F. Gomes, A. R. Kuroswiski,
F. L. L. Medeiros, and D. Geraldo, ‘‘ASA: A simulation environment for
evaluating military operational scenarios,’’ 2022, arXiv:2207.12084.

[9] FlightGear. (2025). FlightGear 2020.3. Accessed: Feb. 12, 2025. [Online].
Available: https://www.flightgear.org/about/policy/

[10] A. N. Costa, J. P. A. Dantas, E. Scukins, F. L. L. Medeiros, and P. Ögren,
‘‘Simulation and machine learning in beyond visual range air combat: A
survey,’’ IEEE Access, vol. 13, pp. 76755–76774, 2025.

[11] P. Sabin. (2012). Simulating War: Studying Conflict Through Simulation
Games. [Online]. Available: https://www.bloomsbury.com/us/simulating-
war-9781472533913/

[12] D. D. Hodson and D. P. Gehl. (2018). The Mixed Reality Simulation
Platform (MIXR). [Online]. Available: https://www.mixr.dev/assets/pages/
docs/the-mixed-reality-simulation-platform-csc-2018.pdf

[13] J. P. A. Dantas, D. Geraldo, A. N. Costa, M. R. O. A. Máximo,
and T. Yoneyama, ‘‘ASA-SimaaS: Advancing digital transformation
through simulation services in the Brazilian air force,’’ in Proc.
Simpósio de Aplicações Operacionais em Areas de Defesa, 2023,
pp. 1–6. [Online]. Available: https://www.sige.ita.br/edicoes-anteriores/
2023/st/235455_1.pdf

[14] J. P. A. Dantas, S. R. Silva, V. C. F. Gomes, A. N. Costa, A. R. Samersla,
D. Geraldo, M. R. O. A. Maximo, and T. Yoneyama, ‘‘AsaPy: A Python
library for aerospace simulation analysis,’’ in Proc. 38th ACM SIGSIM
Conf. Princ. Adv. Discrete Simul., New York, NY, USA, Jun. 2024,
pp. 15–24, doi: 10.1145/3615979.3656063.

[15] J. P. A. Dantas, M. R. O. A. Maximo, and T. Yoneyama, ‘‘Autonomous
agent for beyond visual range air combat: A deep reinforcement learning
approach,’’ in Proc. ACM SIGSIM Conf. Princ. Adv. Discrete Simul., New
York, NY, USA, Jun. 2023, pp. 48–49, doi: 10.1145/3573900.3593631.

[16] J. P. A. Dantas, M. R. O. A. Maximo, and T. Yoneyama, ‘‘Autonomous
aircraft tactical pop-up attack using imitation and generative learning,’’
IEEE Access, vol. 13, pp. 81204–81217, 2025.

[17] J. P. A. Dantas, F. L. L. Medeiros, A. R. Samersla, P. L. R. Botelho,
V. C. F. Gomes, S. R. Silva, Y. D. Ferreira, A. O. Arantes, M. R. C. Aquino,
and M. R. O. A. Maximo, ‘‘Deep reinforcement learning agents with
collective situational awareness for beyond visual range air combat,’’ IEEE
Access, vol. 13, pp. 143052–143069, 2025.

[18] J. P. A. Dantas, M. R. O. A. Maximo, A. N. Costa, D. Geraldo, and
T. Yoneyama, ‘‘Machine learning to improve situational awareness in
beyond visual range air combat,’’ IEEE Latin Amer. Trans., vol. 20, no. 8,
pp. 2039–2045, Aug. 2022. [Online]. Available: https://latamt.ieeer9.org
/index.php/transactions/article/view/6530

[19] X-Plane. (2025).X-Plane 12. Accessed: Apr. 16, 2025. [Online]. Available:
https://www.x-plane.com/

[20] Microsoft Corporation and Asobo Studio. (2020). Microsoft Flight
Simulator. [Online]. Available: https://www.flightsimulator.com

[21] M. Basler et al. The FlightGear manual. 2024. Accessed: Feb. 12, 2025.
[Online]. Available: https://www.flightgear.org/support/manual/

[22] FlightGear. (2019). DARPA Picks Teams for Virtual Air Combat Competi-
tion. Accessed: Feb. 13, 2025. [Online]. Available: https://www.darpa.mil
/news/2019/virtual-air-combat-competition

155832 VOLUME 13, 2025

http://dx.doi.org/10.2514/6.2008-7090
http://dx.doi.org/10.1145/3615979.3656063
http://dx.doi.org/10.1145/3573900.3593631


S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

[23] A. Bittar, H. V. Figuereido, P. A. Guimaraes, and A. C.Mendes, ‘‘Guidance
software-in-the-loop simulation using X-plane and simulink for UAVs,’’ in
Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), May 2014, pp. 993–1002.

[24] X-Plane. (2024). X-Plane 12 Desktop Manual. Accessed: Apr. 16, 2025.
[Online]. Available: https://www.x-plane.com/manuals/desktop/

[25] X-Plane. (2025). FAA-Certified X-Plane. Accessed: Apr. 16, 2025.
[Online]. Available: https://www.x-plane.com/pro/certified/

[26] C. Best and B. Rice, ‘‘Science and technology enablers of live virtual
constructive training in the air domain,’’ Air Space Power J., vol. 32,
no. 4, pp. 59–73, 2018. [Online]. Available: https://www.airuniversity.
af.edu/ASPJ/Display/Article/1669937/science-and-technology-enablers-
of-live-virtual-constructive-training-in-the-air/

[27] C. R. DeMay, E. L. White, W. D. Dunham, and J. A. Pino, ‘‘Alphadogfight
trials: Bringing autonomy to air combat,’’ Johns Hopkins APL Tech. Dig.,
vol. 36, no. 2, pp. 154–163, 2022.

[28] J. P. A. Dantas, M. R. O. A. Maximo, and T. Yoneyama, ‘‘Loyal wingman
assessment: Social navigation for human-autonomous collaboration in
simulated air combat,’’ in Proc. 38th ACM SIGSIM Conf. Princ. Adv.
Discrete Simul., New York, NY, USA, Jun. 2024, pp. 61–62, doi:
10.1145/3615979.3662149.

[29] J. Zhang, D. Wang, Q. Yang, S. Zhuoyong, J. Longmeng, S. Guoqing,
and W. Yong, ‘‘Loyal wingman task execution for future aerial combat:
A hierarchical prior-based reinforcement learning approach,’’ Chin. J.
Aeronaut., vol. 37, no. 5, pp. 462–475, May 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1000936124000839

[30] A. Wood, A. Sydney, P. Chin, B. Thapa, and R. Ross, ‘‘GymFG: A
framework with a gym interface for FlightGear,’’ 2020, arXiv:2004.12481.

[31] A. Salhi, J. E. Jabour, T. L. Arnolds, J. E. Ross, and H. R. Dozier,
‘‘Leveraging JSBSim and gymnasium: A reinforcement learning approach
for air combat simulation,’’ in Communications in Computer and
Information Science, L. Zhou, F.-Y. Wang, and A. M. Madni, Eds., Cham,
Switzerland: Springer, 2025, pp. 271–283.

[32] Tacview. (2025). The Universal Flight Data Analysis Tool. Accessed:
Mar. 5, 2025. [Online]. Available: https://www.tacview.net/

[33] FlightGear. (2022). Multiplayer Protocol. Accessed: Feb. 18, 2025.
[Online]. Available: https://wiki.flightgear.org/Multiplayer_protocol

[34] IEEE Standard for Distributed Interactive Simulation (DIS)—
Communication Services and Profiles, IEEE Standard 1278.2-2015,
2015, pp. 1–42.

[35] FlightGear. (2014). Distributed Interactive Simulation. Accessed:
Feb. 19, 2025. [Online]. Available: https://wiki.flightgear.org/Distributed_
Interactive_Simulation

[36] FlightGear. (2025). FlightGear Source Code. Accessed: Feb. 20, 2025.
[Online]. Available: https://sourceforge.net/p/flightgear/flightgear/ci/next/
tree/src/MultiPlayer/tiny_xdr.cxx

[37] E. Hofman and N. Chr. (2025). F-16 Fighting Falcon. Accessed: Feb. 20,
2025. [Online]. Available: https://github.com/NikolaiVChr/f16

[38] G. Oguntala, R. Abd-Alhameed, S. Jones, J. Noras, M. Patwary, and
J. Rodriguez, ‘‘Indoor location identification technologies for real-time
IoT-based applications: An inclusive survey,’’ Comput. Sci. Rev., vol. 30,
pp. 55–79, Nov. 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1574013718301163

[39] J. P. A. Dantas, A. N. Costa, D. Geraldo, M. R. O. A. Maximo, and
T. Yoneyama, ‘‘Engagement decision support for beyond visual range
air combat,’’ in Proc. Latin Amer. Robot. Symp. (LARS), Brazilian
Symp. Robot. (SBR), Workshop Robot. Educ. (WRE), Natal, Brazil,
Oct. 2021, pp. 96–101.

[40] J. P. A. Dantas, A. N. Costa, F. L. L. Medeiros, D. Geraldo,
M. R. O. A. Maximo, and T. Yoneyama, ‘‘Supervised machine learning
for effective missile launch based on beyond visual range air combat
simulations,’’ in Proc. Winter Simul. Conf. (WSC), Singapore, Dec. 2022,
pp. 1990–2001.

[41] (2025). Ambiente De Simulação Aeroespacial (ASA). Accessed: Feb. 20,
2025. [Online]. Available: https://github.com/ASA-Simulation/f16.git

[42] J. P. Dantas, A. N. Costa, D. Geraldo, M. R. Maximo, and T. Yoneyama,
‘‘PoKER: A probability of kill estimation rate model for air-
to-air missiles using machine learning on stochastic targets,’’ J.
Defense Model. Simul., Jan. 2025, Art. no. 15485129241309675,
doi: 10.1177/15485129241309675.

[43] A. R. Kuroswiski, A. S. Wu, and A. Passaro, ‘‘Optimized prediction
of weapon effectiveness in BVR air combat scenarios using enhanced
regression models,’’ IEEE Access, vol. 13, pp. 21759–21772, 2025.

[44] J. P. A. Dantas, D. Geraldo, F. L. L. Medeiros, M. R. O. A. Maximo, and
T. Yoneyama, ‘‘Real-time surface-to-air missile engagement zone predic-
tion using simulation and machine learning,’’ in Proc. Interservice/Ind.
Training, Simul. Educ. Conf. (I/ITSEC). Orlando, FL, USA: National
Training and Simulation Association (NTSA), Nov. 2023.

[45] J. P. A. Dantas, A. N. Costa, D. Geraldo, M. R. O. A. Maximo,
and T. Yoneyama, ‘‘Weapon engagement zone maximum launch range
estimation using a deep neural network,’’ in Intelligent Systems. Cham,
Switzerland: Springer, 2021, pp. 193–207.

[46] R. Likert, ‘‘A technique for the measurement of attitudes,’’ Arch. Psychol.,
vol. 140, pp. 1–55, May 1932.

[47] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability
for Engineers, 7th ed., Hoboken, NJ, USA: Wiley, 2020.

[48] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, ‘‘System noise,
OS clock ticks, and fine-grained parallel applications,’’ in Proc. 19th Annu.
Int. Conf. Supercomputing, Jun. 2005, pp. 303–312. [Online]. Available:
https://dl.acm.org/doi/10.1145/1088149.1088190

SAMARA R. SILVA received the B.Sc. degree
in aeronautical science from Brazilian Air Force
Academy (AFA), in 2013, and the degree in com-
puter engineering from the Aeronautics Institute
of Technology (ITA), Brazil, in 2022, where she
is currently pursuing the M.Sc. degree. She is a
Researcher at the Institute for Advanced Studies,
Brazilian Air Force. Her research interests include
data science, artificial intelligence, machine learn-
ing, and simulation.

VITOR C. F. GOMES received the B.Sc. degree in
computer science and the M.Sc. and Ph.D. degrees
in applied computing from the National Institute
for Space Research (INPE), Brazil, in 2009,
2012, and 2023, respectively. Currently, he is
a Researcher with the Institute for Advanced
Studies, Brazilian Air Force. His research interests
include distributed computing, geospatial big data,
and data science.

ALESSANDRO O. ARANTES received the B.Sc.
degree in computer science and the M.Sc. and
Ph.D. degrees in applied computing from the
National Institute for Space Research (INPE),
Brazil, in 2000, 2008, and 2016, respectively.
Currently, he is a Researcher with the Institute
for Advanced Studies (IEAv), Brazilian Air Force.
His research interests include applied computing,
software testing, and data science.

ANDRE F. M. CAETANO received the B.Sc.
and M.Sc. degrees in computer science from
São Paulo State University (UNESP), Brazil, in
2013 and 2017, respectively, and the D.Sc. degree
in electrical and computer engineering from the
Aeronautics Institute of Technology (ITA), Brazil,
in 2023. In 2024, he was a Postdoctoral Researcher
at the University of Campinas (UNICAMP),
focusing on digital twins for photovoltaic systems.
In 2025, he joined the Institute for Advanced

Studies (IEAv) as a Researcher. He is currently with Brazilian Air Force. His
research interests include cloud computing, big data, distributed systems, and
modeling and simulation.

VOLUME 13, 2025 155833

http://dx.doi.org/10.1145/3615979.3662149
http://dx.doi.org/10.1177/15485129241309675


S. R. Silva et al.: AsaFG: A Human-in-the-Loop Integration Module for Air Combat Simulations

VICTOR L. D. B. COSTA received the B.Sc.
degree in mechanical-aeronautical engineering
from the Aeronautics Institute of Technology
(ITA), Brazil, in 2024. During his undergraduate
studies, he worked in the areas of image-based
navigation with AI and tactical simulation analysis
at the Institute for Advanced Studies, supporting
projects related to Brazilian Air Force. He is
currently a Research Engineer with the Institute for
Advanced Studies. His research interests include

simulation, finite elements, and parallel processing.

ADRISSON R. SAMERSLA received the B.Sc.
degree in computer engineering from the Aero-
nautics Institute of Technology (ITA), Brazil,
in 2021, and the M.Sc. degree from the Graduate
Program in Electronic and Computer Engineering,
ITA, in 2022. He is currently a Researcher
with the Institute for Advanced Studies (IEAv),
Brazilian Air Force. His research interests include
high-performance computing, machine learning,
robotics, and simulation.

FELIPE L. L. MEDEIROS received the B.Sc.
degree in computer science from the Federal
University of Ouro Preto, Ouro Preto, Brazil,
in 1999, and the M.Sc. and Ph.D. degrees in
applied computing from the National Institute for
Space Research, São José dos Campos, Brazil, in
2002 and 2012, respectively. He has been working
in the field of artificial intelligence, with an
emphasis on metaheuristics, autonomous agents,
and simulation.

YURI D. FERREIRA received the B.Sc. degree
in aerospace engineering from the Aeronautics
Institute of Technology (ITA), Brazil, in 2021.
Currently, he is a Researcher with the Institute
for Advanced Studies, Brazilian Air Force. His
research interests include reinforcement learning
and its applications.

MARCIA R. C. AQUINO received the B.Sc.
degree in computer science from the Federal
University of Juiz de Fora, Brazil, in 1997, and
the M.Sc. degree in applied computing from the
National Institute for Space Research, São José
dos Campos, Brazil, in 2005. She is currently
a Researcher with the Institute for Advanced
Studies (IEAv), Brazilian Air Force. Her research
interests include data science, artificial intelli-
gence, machine learning, simulation, and project
management.

JOAO P. A. DANTAS received the B.Sc. degree
in mechanical-aeronautical engineering from the
Aeronautics Institute of Technology (ITA), Brazil,
in 2015, and the M.Sc. degree from the Graduate
Program in Electronic and Computer Engineering,
ITA, in 2019, where he is currently pursuing the
Ph.D. degree. In 2015, he participated in a year-
long exchange program at Stony Brook University,
USA. In 2022, he was a Visiting Researcher at
the AirLab, Robotics Institute, Carnegie Mellon

University. He is a Researcher with the Institute for Advanced Studies,
Brazilian Air Force. His research interests include machine learning,
robotics, and simulation.

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - ROR identifier: 00x0ma614

155834 VOLUME 13, 2025


