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Al Pilot: Close-Proximity Safe and Seamless Operation of
Manned and Unmanned Aircraft in Shared Airspace

1. Objectives: Develop an Al system to keep autonomous unmanned
aircraft, in conjunction with manned traffic safely separated and behave as
expected when entering and leaving the traffic/break/formation pattern.

2. Key Areas:

2.1. Intent Prediction

Understanding and predicting the intended motion of humans in an environment is an important
skill that robots across various domains, such as aerial robotics, must be equipped with in order
to enable safe interactions.

Motion and intent are influenced by several factors, making the task challenging. One factor
is social behavior, which describes how agents interact, and it heavily depends on the context.
Within AAM, goal points such as airports, pilots, ATC communications, and rules of air are often
well-known. Using this definitive source of information and other implicit sources like weather
can help decipher the intent of other aircraft and increase the length of reliable predictions.
Respecting motion constraints is another relevant aspect in this setting, as it is related to
restrictions that may arise from the agent’s own physical constraints, or the constraints imposed
by the environment, such as the topology of a scene, or the rules associated with it, e.g., pilots
should respect flying guidelines. Moreover, agent motion is driven by each agent’s goals which
vary depending on the situation and the type of agent: goals can be flexible or fixed, short or
long-term, implicit or explicit. This varied nature makes them difficult to model. The majority of
existing works on trajectory prediction are mainly focused on pedestrian behaviors where the
context is relatively loosely defined, i.e., except for the social norm that pedestrians try to
maintain a comfortable distance from others, there are few rules that guide pedestrian behavior.

2.2.  Planning

As the FAR rules only specify a rough guideline, autonomous vehicles must be equipped with the
capability to make flexible decisions to comply with traffic norms and generalize to arbitrary
situations. The idea of rule-based navigation is to learn to follow the observed traffic patterns.
Generating actions that are not only safe but also follow rules is thus critical in generating behavior
that is acceptable to human pilots co-habiting the same airspace.

Deep reinforcement learning methods have been successful in learning autonomous navigation.
In sequential decision-making, policies are often represented by a Markov Decision Process



DocuSign Envelope ID: D8FFA692-30A8-4726-BA12-787788604873

(MDP) with a well-defined reward function. The complexity of manually defining a reward function
hampers the widespread applicability of reinforcement learning and optimal control algorithms.
Learning a policy from expert demonstrations (LfD or imitation learning) has led to a variety of
applications with state-of-the-art performance. Behavior cloning (BC) enables the implementation
of supervised learning like methods but requires a large quantity of demonstration data and
interactive learning to reduce compounding errors due to out-of-distribution data or covariate shift.
These approaches, however, have the limitations of being sensitive to sub-optimal
demonstrations and the inflexibility to generalize to other applications. Generative adversarial
imitation learning (GAIL) and related works have approached imitation learning as a system
consisting of a learner's policy and a discriminator network that attempts to distinguish between
learner transitions from expert transitions. GAIL attempts to learn policies directly from simulation
and has the limitations of sub-optimal demonstrations, and convergence becomes slow due to
stability issues with low data.

Temporal logics such as Signal Temporal Logic (STL) provide a mathematically robust
representation to encode such spatio-temporal constraints. They can be used to logically
specify desired behavior translated from requirements expressed in natural language. STL is
used to specify properties over real-valued dense time signals often generated by continuous
dynamical systems. Quantitative semantics associated with STL provides a real value called
robustness which quantifies the degree of satisfaction or violation. This property enables the
designer to encode domain-specific constraints and quantitatively measure their satisfaction
with motion planning and control. In order to infuse the STL specifications to improve the base
LfD, we propose using a variant of Monte Carlo Tree Search (MCTS) that uses an offline pre-
trained network to generate simulated roll-outs. MCTS is a powerful heuristic search algorithm
often deployed for long-horizon decision making tasks.. MCTS, when used with a UCT heuristic,
has properties like anytime convergence to the best action. This makes it well suited to be used
as a long-horizon goal directed planner within large state spaces with a time budget.

2.3. Automated speech recognition and production

Establishing clear communication between a human operator/pilot and an Al system in our target
problem domain is critical. Understanding and decoding aviation-specific terminology, which
differs from everyday speech constructions, is a big challenge. Other challenges such as radio
background noise, incomplete instructions, and radio phraseology must also be addressed.

To this end, we propose a bi-directional communication mechanism for human-Al collaboration,
focusing on clarity instead of naturalness to accomplish an acceptable performance level to
produce a language covering the controlled vocabulary used in airspace operations. We employ
learning approaches for the Al system to understand complex concepts, e.g., learning from
demonstrations, and, to language understanding, develop a language generation system, which
can summarize visually perceived information. This language generation capability can also
clarify potential ambiguity when receiving commands from a human operator/pilot.
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2.4.  High-fidelity Simulator and Integration

A simulator that demonstrates a specific performance level and satisfies some standards may
be applied to training, testing, and checking instead of doing the same during flight. The
aviation-training community believes that a high level of fidelity is mandated to deliver the
highest level of transfer of learning to the actual equipment. The fidelity of a flight simulator is
essential to the pilots' performance in a real world. We are constantly working to deliver high-
fidelity simulation-based assessment devices to enhance the expert pilot performance in real-
world situations. Therefore, simulations have been implemented to help aviators refine their
skills to become exceptional performers in the aviation industry.

The figure shows the high-fidelity simulator setup that enables Human-Al interaction. Figure a)
shows a top-down view with one human agent (magenta) interacting and one Al agent (lime)
while trying to land on the same runway. The most likely branch of the MCTS forward
propagation tree for both the agents is shown in cyan. White lines show the reference
trajectories. Figure b) shows the physical simulator setup with an immersive environment for the
human pilot. Figure c) shows a screengrab of the visual rendering of the simulator using the X-
Plane 11 flight simulator backend.

3. Technical Results
3.1. Intent Prediction
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Figure shows the proposed intent prediction model.

For this project, we specifically focus on the settings where there exist navigation guidelines
relatively strictly defined yet not clearly marked in their physical environments, e.g., in aerial
navigation, although there are strict rules analogous to ground navigation, the air space does
not display visible lanes. To address this challenge, we propose an approach, known here as
Social-PatteRNN [1], where we aim to learn such contexts in the form of motion patterns and
social influences extracted from the patterns. This work builds onbackground IP “Social-
PatteRNN: An algorithm for socially-aware trajectory prediction from motion patterns”
(under submission). We hypothesize that, within these domains, in the short term, agents
tend to exhibit some motion patterns that reveal both their general directions of motion and their
intermediate goals. We also believe that such patterns further explain general rules of motion,
which may be explicit, e.g., sports rules or flying guidelines, or implicit, e.g., social etiquette, as
well as, capture admissible motions. From these intuitions, we propose a data-driven approach
to learn these patterns of motion and use them as a conditioning signal for predicting multimodal
trajectories. Then, we use the learned patterns to extract sub-goal information which we
aggregate to our model as the social context.

We also assessed the generalizability of the proposed approach across different domains:
humans in crowds, humans in sports, and manned aircraft. Experimental results show that the
proposed approach has consistent performance across these domains.
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Table shows the results for various intent prediction algorithms compared to ours. Results are in
terms of Average Displacement Error and Final Displacement Error ADE / FDE.

Trajair (km)

1 A-VRNN [5] 0.64 / 1.31
2 DAG-Net [5] 0.78 / 1.53
3 TrajAirNet [3] 0.77 / 1.50
4  S-PEC [10] 0.96/2.05
5  Social-PatteRNN (Ours) 0.56 / 1.20
6  Social-PatteRNN-ATT (Ours) 0.55/1.19
- - - GT Trajectory @ History Start —  TrajAirNet ——— VRNN + PAT
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Figure shows various models’ intent prediction results compared against our model, Social-
PatteRNN. Dashed lines represent the ground truth trajectory, while solid lines represent the
predicted intent. The proposed approach exhibits less jerkiness, producing more stable
trajectories and closer to the ground truth, compared to other models.

3.3 Planning
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Figure shows the proposed planning algorithm

In this work, we present a novel decision-making method that uses MCTS to build a tree
structure that guides the offline pre-trained LfD policies online with STL specifications. We
achieve this by biasing the MCTS heuristic sampling towards branches with higher STL
satisfactions. The primary insight is that while the LfD policy decides on the low level executions
in line with the expert demonstrations, STL encourages the satisfaction of high-level objectives.
This hierarchical approach provides a method to encode rules while allowing the agent to
choose how to satisfy the constraints in a learning-enabled framework. The STL specifications
thus provide a guide rail against the low-bandwidth noise in the expert demonstrations.

Given a continuous-space dynamic system of the form s™ = f(s, a), we define a discrete-time
Markov Decision Process without rewards, (MDP \R). Let M = (S, A, T, p0, G) where S is the set
of states s € S, a €A is the discrete set of actions or motion primitives thatfollow f(-), T: S XA
= S is the transition function, M €S is an initial state distribution, and G is the goal distribution.
The task is to produce a policy 11(8) from a start location sO € (@ to goal location g €G that
leads to a trajectory T = (s0, a0, s1, a1, ..., g). We also assume access to expert trajectories D
={(sj0, aj0, sj1, aj1, . . ., gj)} and high-level STL specification ® that encodes any rules we
expect the system to follow. An STL formula ® can be built recursively from predicates using the
following grammar

d=T |”c | |d AY |<>|:a,b]q3 |I:[a,b]<D|<D1U [a,b]D2

where ®1, ®2 are STL formulas, T is the Boolean True, pc is a predicate of the form u(s) >¢, —
and A the Boolean negation and AND operators, respectively, and 0 £ a < b < codenote time
intervals. The temporal operators ¢, [Jand U are called “eventually”, “always”, and “until”
respectively. The quantitative semantics of a formula with respect to a signal [Ixt can be used to

compute robustness values for the specifications used in our application.

Framework
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Algorithm 1: Plan (6,®)

1 s « Sample(pop)

2 g + Sample(G)

3 while s # g and not maxSteps do

4 while timeFElapsed < planH orizon do
5 | N(:) « MCTS(s0:t,9,6,®,0)

6 end

7 a < choicen (N (s,a’))

8 s+ T(s,a)

9

end

We first train a LfD policy by formulating the problem as finding a distribution of future actions
conditioned on the past trajectories and the goal where tobs is the observation time horizon.
The MCTS (see Algorithm 2) uses the policy to generate simulations. Each simulation starts
from the root state and iteratively selects moves that maximize the STL modified UCT heuristic.
For each state transition, we maintain a directed edge in the tree with an action value Q(s, a),
prior probability P(s, a), STL heuristic H(s, a) and a visit count N(s, a). The total heuristic value
is calculated as a weighted sum by controlling the degree of exploration and STL heuristic’s
weight. Starting with the initial state s(0), at each time step, we calculate the action to take,
which maximizes U(s, a) (Line 12). If the next state already exists in the tree, we continue our
simulation, else a new node is created in our tree, and we initialize its P(s, -) = [1p6(s) from our
policy '8 (Line 8). The expected reward v = vO(s) can be provided by the user as a learned
value function or as a cost-map (Line 9). The heuristic hST L is calculated using the STL
specification (Line 14). We initialize Q(s, a), H(s, a) and N(s, a) to O for all a. We then propagate
the cost v and the STL heuristic hST L back up the MCTS tree, updating all the Q(s, a) and H(s,
a) values seen during the simulation, and start again from the root.

After running forward simulations of the MCTS, the N(s, a) values provide a good approximation
for the optimal stochastic process from each state. Hence, the action we take is randomly
sampled from a distribution of actions with probability proportional to N(s, a). We expand the
search space until we exhaust the planning budget time plan horizon. After each action is
selected, the MCTS tree is reinitialized from the actual trajectory followed by the agent. The
planner is terminated when the goal is reached, or the maximum number of steps is reached,
whichever comes first.
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Algorithm 2: MCTS (s¢.;,2,0,2,hsrr)

1 if s € G then
2 | returns==g, hgrr
3 end

a if s ¢ Tree then

5 Tree + TreeUs

6 Q(s,a) « 0
.
8
9

N(s,a) « 0

P(s,a) + 7p(s)
v(s) «+ CostMap(s)
10 return v(s), hsrp

11 else

12 a + argmazxy [Q(s,g,’) 4 aP(sa)yN(s) |

14+N(s,a’)
@H(s,a’)}
13 s« T(s,a)
14 hsrr + STL(S’ + 50:¢, @)
15 U:hSTL — MCTS(S’-I—SQ:t,g, 9, (I),h.STL)
16 | N(s,a) < N(s,a)+1

N(s,a)Q(s,a)+v

17 Q(s,a) « 1+§(s,a)+
N(s,a)*H(s,a)+h

18 H(s,a) « (s, )1+J\4('(s,1)1) STL

19 return v, hsrr
20 end

Implementation Details

Consider a fixed-wing aircraft at time t, let st = (xt, yt, zt, xt) € R3 XS0(2) denote the position
and where v is the aircraft’s inertial speed, v2D is the speed in the 2-D plane, ¢ is the roll-angle,
and vh is vertical speed. Finally, g is the acceleration due to gravity. We assume a zero wind
condition.

The action space A is a fixed library of 30 motion primitives that discretizes each of the control
inputs. We use the inertial velocities (v) 70 and 90 knots, the vertical velocities (vh) +500 ft/min
and -500 ft/min and the bank angle (¢) discretization such that x changes by 45- and 90-
heading over the chosen time-horizon of 20 sec. The goal distribution G is a one-hot vector
representation of the final goal of a particular agent as the eight cardinal directions along with
two runway ends, as shown in Fig. 3. The set G is represented as G = {N, NE, E, SE, S, SW, W,
R08, R26} with each element representing the final region the aircraft is desired to reach as
shown in Fig. 3. For simplicity we also set the start states equal to G.

The implementation details are split between online and offline components.

1) Dataset: We use the TrajAir dataset (5.2.1) , which is collected at the Pittsburgh-Butler
Regional Airport (ICAO:KBTP). The dataset contains 111 days of transponder data that can be
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used to extract expert demonstrations from pilots as they navigate the un-towered airspace. The
dataset trajectories are smoothed using a B spline (basis-spline) approximate representation of
order 2.

2) Offline LfD Policy Details: The LfD policy takes as input the past trajectories of the agent to
predict its possible action distribution. While the method can use any LfD policy, we use a goal-
conditioned generative adversarial imitation learning (GoalGAIL) method. The GoalGAIL is
modified to use Temporal Convolutional Layers (TCNs) to process the sequential trajectory
data. TCN layers encode a trajectory’s spatio-temporal information into a latent vector without
losing the underlying data’s temporal (causal) relations. We use TCNs as an alternative to using
LSTMs for encoding the trajectories.

We break the trajectories in a scene into sequences of length tobs + tpred where tobs = 11sec
and tpred = 20sec. In a given scene, the raw trajectory in absolute coordinates of the agent is
encoded using the TCN layers as hobs. The agent’s goal g [ G is encoded through an MLP
layer, @1, and is concatenated with the encoded trajectory vector. We measure how close the
predicted trajectory is to the expert trajectory using a mean squared error (MSE) loss.

A discriminator Dy is trained to distinguish expert transitions from policy transitions .The
combination of these two loss functions is used to train the model.

In order to convert s” to a", we match the generated trajectories from the control inputs in the
library A using a weighted L2 Euclidean error distance over (x, y, z) points on the trajectory. For
training, we use the AdamW optimizer with a learning rate of 3e - 3.

3) Signal Temporal Logic Specifications: We evaluate the performance of our agent based on
reaching the goal while adhering to the airport traffic pattern. The goal objective, as well as
traffic pattern compliance, are both encoded using STL specifications. We use the three stages
for landing pattern. ®1, ®2, and ®3 represent the STL formulas encoding occupancy of regions
corresponding to the downward, base, and final stages, respectively. The landing STL
specification becomes:

DOL=0@1 A © (@2 A © OP3))

¢ (@) can be interpreted as “Eventually” being in a region represented by ®. The nested ¢
operators encode a sequential visit of regions represented by ®1, ®2, and ®3 . Similarly, the
takeoff STL specification is defined based on the goal regions reached by the aircraft. By
defining reaching a goal region g 1 G by an STL formula ®4, we get the takeoff specification:

OT =0 (P4)

The robustness values of the STL specifications are eval uated on the state trajectory traces
generated by the search tree. The first element of the traces is the tree root node, and the last
element of the trace is the node whose value is being computed.
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4) Online Monte Carlo Tree Search : The MCTS is implemented as a recursive function where
each iteration ends with a new leaf that corresponds to an action in the trajectory library. The
implementation uses a normalized costmap v(s) that is built by counting the frequencies of the
aircraft in the TrajAir dataset at particular states s.

Evaluations

Evaluation of the proposed approach is performed using a custom simulator that follows the
dynamics defined in Eq. 4. The network implementations are in PyTorch. We use the recently
released rtamt package, an online monitoring library for calculating STL robustness values. To
showcase real-time online evaluations, simulations are performed on an Intel NUC computer
with Intel® Core™ i7- 8559U CPU @ 2.70GHz x 8. The complete implementation details and
parameter details are in the open-sourced code base3and the associated Readme.

A. Qualitative results
=0 D, (A O(Base ®,A (DO )

Y (in Kr
¥ (in K
Y (in K

X (in Km) X (in Km) X (in Km)

Time Step —» 3 7 1

Figure shows an example scenario where the aircraft starts from the South-West and is tasked
with landing at R26 while following the standard FAA traffic pattern. The rules of the traffic
pattern are encoded as STL specifications. The white marked line shows the aircraft’s position
at each step. At every step, the MCTS replans, and the resulting tree is shown in magenta. The
STL sub-specifications are shown as rectangles. As can be seen, the aircraft manages to reach
the runway while satisfying the specifications. The size of the search tree is a function of
available planHorizon.

B. Comparative results

In order to perform quantitative studies, we compare the performance of the proposed algorithm
with vanilla LfD policies. We uniformly sample 100 start-goal pairs randomly from p0, G. G is
truncated to N, S, E, W, R where R rep resents both R08 and R26 to condense the results. We
then provide these to Algorithm 1, which plans for the agent.

Based on the selected start and goal pair, a relevant STL specification is chosen. Each episode
ends when the agent reaches the goal or if the maximum steps are exceeded. In addition to the
goalGAIL policy, we also train a pure Behavior Cloning (BC) policy. The BC policy uses a TCN
to encode the history and outputs an action without a goal vector or a discriminator.
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Comparisons were carried out with both these policies integrated into the MCTS framework with
ablation on the STL heuristic to show the impact of the STL specification.

We define our evaluation metrics as follows:

» Success Rate: Fraction of episodes that were successful in reaching their goal locations.

» STL Score: Average of the normalized fraction of the STL robustness value satisfied over all
the episodes. A higher value indicates better satisfaction.

Table | shows the quantitative results. Our proposed algorithm performs significantly better than
the baselines for all start-goal pairs. We get an almost perfect success rate in the aircraft takeoff
scenarios. The aircraft landing cases are more challenging due to following the specific landing
patterns when incoming from different sides of the runway, which is reflected in the success
rates shown. Additionally, we observe the baseline BC performs similarly to GAIL on the
success metric but not on the STL robustness. This shows that while BC policies are
comparable in reaching the goals, the transient performance of GoalGAIL is better.
Incorporating STL improves the robustness values for both LfD policies.

q Takeoff Specification ® Landing Specification
Algorithm N S P E £ w N Sg P E 1 w Total
BC + MCTS 02/02 | 00/01 | 03/01 | 03/01 | 00/0.0 | 0.1/04 | 0.1/04 | 03/04 | 0.1/02
GoalGAIL + MCTS 00/03 | 01/04 | 00/03 | 00/04 | 03/0.6 | 0.1/02 | 03/0.7 | 0.1/05 | 0.1/04
BC + MCTS + STL 1.0/09 [ 1.0/09 | 06/03 | 0.7/04 | 02/05 | 02/05 | 02/05 | 02/05 | 05/0.6
GoalGAIL + MCTS+STL | 1.0/09 | 1.0/09 | 08/0.7 | 1.0/09 | 0.7/09 | 0.8/09 | 0.3/08 | 0.5/0.9 | 0.7/ 0.8

TABLE I: Table shows the quantitative results with randomly sampled start and goal states for two LfD policies with
ablation studies with the STL heuristic. Results show the Success Rate 1 / STL Score 1 for two vanilla LfD policies and
their ablations with the STL heuristic. Results show both Landing X = R and Takeoff R = X scenarios for each of the
cardinal directions X.

3.4 Speech Recognition

We introduce two off-the-shelf modules to realize the automatic speech recognition and speech
generation functionality. For speech-to-text, we use a Speech to Text Transformer model trained
on the Librispeech corpus. This model achieves a Word Error Rate of 41.3% and a Character
Error Rate of 12.9% on our in-house dataset. To further improve the model’s prediction accuracy,
we use string matching to replace the predicted words or phrases to those more probable in the
air traffic control scenario (e.g., “one way two six” — “runway two six”).

Additionally, to investigate the capability of the speech-to-text model even further, we evaluate
the model without further fine-tuning on a subset of the LDC Air Traffic Control Corpus, which is
a dataset collected from actual pilot utterance recordings. Speech collected in the Air Traffic
Control domain typically contains excessive background noise coming from aircraft, and speakers
tend to talk much quicker than the Librispeech and Commonvoice corpora general speech-to-text
models are trained on. As expected, in this dataset, the model achieves a Word Error Rate of
91% and a Character Error Rate of 60.6%. The relatively high error rate can be explained by the
distinct properties of speech recorded in Air Traffic Control domains, and expect that in-domain
fine-tuning can boost the recognition accuracy in relevant datasets. For text-to-speech, we employ
the recently proposed FastSpeech 2 model and apply slot-filling to a pre-defined set of template
utterances.
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4.  Significant Hardware or Software Developed:

4.1 High Fidelity Simulator
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Figure. XPlaneROS Architecture

XPlaneROS (5.2.2) integrates a high-fidelity simulator with a state-of-the-art autopilot. The
complete system enables the use of high-level or lower-level commands to control a general
aviation aircraft in realistic world scenarios anywhere in the world. We chose X-Plane 11 as our
simulator because of its open API and realistic aircraft models and visuals. For the lower-level
control, we've integrated ROSplane as the autopilot. ROSplane is a control stack for fixed-wing
aircraft developed by the BYU MAGICC Lab.

XPlaneROS interfaces with XPlane 11 using NASA’s XPlaneConnect. With XPlaneROS, the
information from XPlane is published over ROS topics. The ROSplane integration then uses this
information to generate actuator commands for ailerons, rudder, elevator, and throttle based on
higher-level input to the system. These actuator commands are then sent to XPlane through
XPlaneConnect.

ROSplane uses a cascaded control structure and has the ability to follow waypoints with Dubin’s
Paths. XPlaneROS provides additional capabilities to follow a select set of motion primitives.
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There have also been some extensions to ROSplane like employing a proper takeoff, additional
control loops for vertical velocity rates and a rudimentary autonomous landing sequence.
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5.3 Videos:

[1] STL-MCTS https://www.youtube.com/watch?v=fiFCwc57MQs

[2] AirTrack https://www.youtube.com/watch?v=H3IL _Wijxjpw&t=1s

[3] TrajAirNet https://www.youtube.com/watch?v=elAQXrxB2gw&t=15s

[4] Demo https://www.youtube.com/watch?v=iU MyMwuESE

5.4 Blogs:
[1] How do you train Al Pilots? [Link]

[2] XPlaneROS : ROS Wrapper for Autonomous Fixed Wing Applications [Link]
[3] Long-range Aircraft Detection and Tracking [Link]

[4] TrajAir: A General Aviation Trajectory Dataset [Link]

5.5 Media Coverage:

[1] Move over, autopilot: This Al can avoid other planes, Popular Science, Sept 2022

[2] CMU's Al pilot lands in the news, Practical Al — Episode #189, Sept 2022

[3] Researchers Develop Al Pilot for Navigating Crowded Airspace, Aviation Today, Aug 2022

[4] Al Pilot Can Navigate Crowded Airspace, CMU School Of Computer Science, Aug 2022
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https://theairlab.org/trajair/
https://www.popsci.com/technology/artificial-intelligence-fly-planes/?amp
https://changelog.com/practicalai/189
https://www.aviationtoday.com/2022/08/29/researchers-develop-ai-pilot-navigating-crowded-airspace/
https://www.cs.cmu.edu/news/2022/ai-pilot
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