
 

AI Pilot: Close-Proximity Safe and Seamless Operation of 
Manned and Unmanned Aircraft in Shared Airspace 
 

1. Objectives: Develop an AI system to keep autonomous unmanned 
aircraft, in conjunction with manned traffic safely separated and behave as 
expected when entering and leaving the traffic/break/formation pattern. 
 
 
 
2. Key Areas: 

 
2.1. Intent Prediction 

 
Understanding and predicting the intended motion of humans in an environment is an important 
skill that robots across various domains, such as aerial robotics, must be equipped with in order 
to enable safe interactions. 

Motion and intent are influenced by several factors, making the task challenging. One factor 
is social behavior, which describes how agents interact, and it heavily depends on the context. 
Within AAM, goal points such as airports, pilots, ATC communications, and rules of air are often 
well-known. Using this definitive source of information and other implicit sources like weather 
can help decipher the intent of other aircraft and increase the length of reliable predictions. 
Respecting motion constraints is another relevant aspect in this setting, as it is related to 
restrictions that may arise from the agent’s own physical constraints, or the constraints imposed 
by the environment, such as the topology of a scene, or the rules associated with it, e.g., pilots 
should respect flying guidelines. Moreover, agent motion is driven by each agent’s goals which 
vary depending on the situation and the type of agent: goals can be flexible or fixed, short or 
long-term, implicit or explicit. This varied nature makes them difficult to model. The majority of 
existing works on trajectory prediction are mainly focused on pedestrian behaviors where the 
context is relatively loosely defined, i.e., except for the social norm that pedestrians try to 
maintain a comfortable distance from others, there are few rules that guide pedestrian behavior. 

 
2.2. Planning 

 
As the FAR rules only specify a rough guideline, autonomous vehicles must be equipped with the 
capability to make flexible decisions to comply with traffic norms and generalize to arbitrary 
situations. The idea of rule-based navigation is to learn to follow the observed traffic patterns. 
Generating actions that are not only safe but also follow rules is thus critical in generating behavior 
that is acceptable to human pilots co-habiting the same airspace. 
 
Deep reinforcement learning methods have been successful in learning autonomous navigation. 
In sequential decision-making, policies are often represented by a Markov Decision Process 
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(MDP) with a well-defined reward function. The complexity of manually defining a reward function 
hampers the widespread applicability of reinforcement learning and optimal control algorithms. 
Learning a policy from expert demonstrations (LfD or imitation learning) has led to a variety of 
applications with state-of-the-art performance. Behavior cloning (BC) enables the implementation 
of supervised learning like methods but requires a large quantity of demonstration data and 
interactive learning to reduce compounding errors due to out-of-distribution data or covariate shift. 
These approaches, however, have the limitations of being sensitive to sub-optimal 
demonstrations and the inflexibility to generalize to other applications. Generative adversarial 
imitation learning (GAIL) and related works have approached imitation learning as a system 
consisting of a learner's policy and a discriminator network that attempts to distinguish between 
learner transitions from expert transitions. GAIL attempts to learn policies directly from simulation 
and has the limitations of sub-optimal demonstrations, and convergence becomes slow due to 
stability issues with low data. 
 
Temporal logics such as Signal Temporal Logic (STL) provide a mathematically robust 
representation to encode such spatio-temporal constraints. They can be used to logically 
specify desired behavior translated from requirements expressed in natural language. STL is 
used to specify properties over real-valued dense time signals often generated by continuous 
dynamical systems. Quantitative semantics associated with STL provides a real value called 
robustness which quantifies the degree of satisfaction or violation. This property enables the 
designer to encode domain-specific constraints and quantitatively measure their satisfaction 
with motion planning and control. In order to infuse the STL specifications to improve the base 
LfD, we propose using a variant of Monte Carlo Tree Search (MCTS) that uses an offline pre-
trained network to generate simulated roll-outs. MCTS is a powerful heuristic search algorithm 
often deployed for long-horizon decision making tasks.. MCTS, when used with a UCT heuristic,  
has properties like anytime convergence to the best action. This makes it well suited to be used 
as a long-horizon goal directed planner within large state spaces with a time budget.  
 

 
2.3. Automated speech recognition and production 

 
Establishing clear communication between a human operator/pilot and an AI system in our target 
problem domain is critical. Understanding and decoding aviation-specific terminology, which 
differs from everyday speech constructions, is a big challenge. Other challenges such as radio 
background noise, incomplete instructions, and radio phraseology must also be addressed. 
 
To this end, we propose a bi-directional communication mechanism for human-AI collaboration, 
focusing on clarity instead of naturalness to accomplish an acceptable performance level to 
produce a language covering the controlled vocabulary used in airspace operations. We employ 
learning approaches for the AI system to understand complex concepts, e.g., learning from 
demonstrations, and, to language understanding, develop a language generation system, which 
can summarize visually perceived information. This language generation capability can also 
clarify potential ambiguity when receiving commands from a human operator/pilot.  
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2.4. High-fidelity Simulator and Integration 
 
 
A simulator that demonstrates a specific performance level and satisfies some standards may 
be applied to training, testing, and checking instead of doing the same during flight. The 
aviation-training community believes that a high level of fidelity is mandated to deliver the 
highest level of transfer of learning to the actual equipment. The fidelity of a flight simulator is 
essential to the pilots' performance in a real world. We are constantly working to deliver high-
fidelity simulation-based assessment devices to enhance the expert pilot performance in real-
world situations. Therefore, simulations have been implemented to help aviators refine their 
skills to become exceptional performers in the aviation industry. 
 
 
 
 

 
 
The figure shows the high-fidelity simulator setup that enables Human-AI interaction. Figure a) 
shows a top-down view with one human agent (magenta) interacting and one AI agent (lime) 
while trying to land on the same runway. The most likely branch of the MCTS forward 
propagation tree for both the agents is shown in cyan. White lines show the reference 
trajectories. Figure b) shows the physical simulator setup with an immersive environment for the 
human pilot. Figure c) shows a screengrab of the visual rendering of the simulator using the X-
Plane 11 flight simulator backend. 
 
 
 
 
 

3. Technical Results 
3.1. Intent Prediction 
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Figure shows the proposed intent prediction model. 

 
For this project, we specifically focus on the settings where there exist navigation guidelines 
relatively strictly defined yet not clearly marked in their physical environments, e.g., in aerial 
navigation, although there are strict rules analogous to ground navigation, the air space does 
not display visible lanes. To address this challenge, we propose an approach, known here as 
Social-PatteRNN [1], where we aim to learn such contexts in the form of motion patterns and 
social influences extracted from the patterns. This work builds onbackground IP “Social-
PatteRNN: An algorithm for socially-aware trajectory prediction from motion patterns” 
(under submission).  We hypothesize that, within these domains, in the short term, agents 
tend to exhibit some motion patterns that reveal both their general directions of motion and their 
intermediate goals. We also believe that such patterns further explain general rules of motion, 
which may be explicit, e.g., sports rules or flying guidelines, or implicit, e.g., social etiquette, as 
well as, capture admissible motions. From these intuitions, we propose a data-driven approach 
to learn these patterns of motion and use them as a conditioning signal for predicting multimodal 
trajectories. Then, we use the learned patterns to extract sub-goal information which we 
aggregate to our model as the social context.  
We also assessed the generalizability of the proposed approach across different domains: 
humans in crowds, humans in sports, and manned aircraft. Experimental results show that the 
proposed approach has consistent performance across these domains.  
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Table shows the results for various intent prediction algorithms compared to ours. Results are in 
terms of Average Displacement Error and Final Displacement Error  ADE / FDE. 

 
 

 
Figure shows various models’ intent prediction results compared against our model, Social-
PatteRNN. Dashed lines represent the ground truth trajectory, while solid lines represent the 
predicted intent. The proposed approach exhibits less jerkiness, producing more stable 
trajectories and closer to the ground truth, compared to other models.  

3.3 Planning 
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Figure shows the proposed planning algorithm 
In this work, we present a novel decision-making method that uses MCTS to build a tree 
structure that guides the offline pre-trained LfD policies online with STL specifications. We 
achieve this by biasing the MCTS heuristic sampling towards branches with higher STL 
satisfactions. The primary insight is that while the LfD policy decides on the low level executions 
in line with the expert demonstrations, STL encourages the satisfaction of high-level objectives. 
This hierarchical approach provides a method to encode rules while allowing the agent to 
choose how to satisfy the constraints in a learning-enabled framework. The STL specifications 
thus provide a guide rail against the low-bandwidth noise in the expert demonstrations.  
 
Given a continuous-space dynamic system of the form s˙ = f(s, a), we define a discrete-time 
Markov Decision Process without rewards, (MDP \R). Let M = (S, A, T, ρ0, G) where S is the set 
of states s ∈ S, a ∈ A is the discrete set of actions or motion primitives that follow f(· ), T : S × A 
⇒ S is the transition function, ρ0 ∈ S is an initia l state distribution, and G is the goal distribution.  
The task is to produce a policy π(θ) from a start location s0 ∈ ρ0 to goal location g ∈ G that 

leads to a trajectory τ = (s0, a0, s1, a1, . . . , g). We also assume access to expert trajectories D 
= {(sj0, aj0, sj1, aj1, . . . , gj)} and high-level STL specification Φ that encodes any rules we 
expect the system to follow. An STL formula Φ can be built recursively from predicates using the 
following grammar  
 
Φ := ⊤ | µc | ¬Φ | Φ ∧ Ψ | ♢[a,b]Φ | □[a,b]Φ | Φ1U [a,b]Φ2  
 
where Φ1, Φ2 are STL formulas, ⊤ is the Boolean True, µc is a predicate of the form µ(s) > c, ¬ 
and ∧ the Boolean negation and AND operators, respectively, and 0 ≤ a ≤ b < ∞ denote time 

intervals. The temporal operators ♢, □ and U are called “eventually”, “always”, and “until” 
respectively. The quantitative semantics of a formula with respect to a signal �xt can be used to 
compute robustness values for the specifications used in our application.  
 
Framework  
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We first train a LfD policy by formulating the problem as finding a distribution of future actions 
conditioned on the past trajectories and the goal where tobs is the observation time horizon.  
The MCTS (see Algorithm 2) uses the policy  to generate simulations. Each simulation starts 
from the root state and iteratively selects moves that maximize the STL modified UCT heuristic.  
For each state transition, we maintain a directed edge in the tree with an action value Q(s, a), 
prior probability P(s, a), STL heuristic H(s, a) and a visit count N(s, a). The total heuristic value 
is calculated as a weighted sum by controlling the degree of exploration and STL heuristic’s 
weight. Starting with the initial state s(0), at each time step, we calculate the action to take, 
which maximizes U(s, a) (Line 12). If the next state already exists in the tree, we continue our 
simulation, else a new node is created in our tree, and we initialize its P(s, ·) = �pθ(s) from our 
policy πˆθ (Line 8). The expected reward v = vθ(s) can be provided by the user as a learned 
value function or as a cost-map (Line 9). The heuristic hST L is calculated using the STL 
specification (Line 14). We initialize Q(s, a), H(s, a) and N(s, a) to 0 for all a. We then propagate 
the cost v and the STL heuristic hST L back up the MCTS tree, updating all the Q(s, a) and H(s, 
a) values seen during the simulation, and start again from the root.  
After running forward simulations of the MCTS, the N(s, a) values provide a good approximation 
for the optimal stochastic process from each state. Hence, the action we take is randomly 
sampled from a distribution of actions with probability proportional to N(s, a). We expand the 
search space until we exhaust the planning budget time plan horizon. After each action is 
selected, the MCTS tree is reinitialized from the actual trajectory followed by the agent. The 
planner is terminated when the goal is reached, or the maximum number of steps is reached, 
whichever comes first. 
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Implementation Details 
 
Consider a fixed-wing aircraft at time t, let st = (xt, yt, zt, χt) ∈ R3 × SO(2) denote the position 

and  where v is the aircraft’s inertial speed, v2D is the speed in the 2-D plane, ϕ is the roll-angle, 
and vh is vertical speed. Finally, g is the acceleration due to gravity. We assume a zero wind 
condition. 
The action space A is a fixed library of 30 motion primitives that discretizes each of the control 
inputs. We use the inertial velocities (v) 70 and 90 knots, the vertical velocities (vh) +500 ft/min 
and -500 ft/min and the bank angle (ϕ) discretization such that χ changes by 45◦ and 90◦ 
heading over the chosen time-horizon of 20 sec. The goal distribution G is a one-hot vector 
representation of the final goal of a particular agent as the eight cardinal directions along with 
two runway ends, as shown in Fig. 3. The set G is represented as G = {N, NE, E, SE, S, SW, W, 
R08, R26} with each element representing the final region the aircraft is desired to reach as 
shown in Fig. 3. For simplicity we also set the start states equal to G.  
 
The implementation details are split between online and offline components.  
 
1) Dataset: We use the TrajAir dataset (5.2.1) , which is collected at the Pittsburgh-Butler 
Regional Airport (ICAO:KBTP). The dataset contains 111 days of transponder data that can be 
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used to extract expert demonstrations from pilots as they navigate the un-towered airspace. The 
dataset trajectories are smoothed using a B spline (basis-spline) approximate representation of 
order 2.  
 
2) Offline LfD Policy Details: The LfD policy takes as input the past trajectories of the agent to 
predict its possible action distribution. While the method can use any LfD policy, we use a goal-
conditioned generative adversarial imitation learning (GoalGAIL) method. The GoalGAIL is 
modified to use Temporal Convolutional Layers (TCNs) to process the sequential trajectory 
data. TCN layers encode a trajectory’s spatio-temporal information into a latent vector without 
losing the underlying data’s temporal (causal) relations. We use TCNs as an alternative to using 
LSTMs  for encoding the trajectories.  
 
We break the trajectories in a scene into sequences of length tobs + tpred where tobs = 11sec 
and tpred = 20sec. In a given scene, the raw trajectory in absolute coordinates of the agent is 
encoded using the TCN layers as hobs. The agent’s goal g ∼ G is encoded through an MLP 
layer, φ1, and is concatenated with the encoded trajectory vector. We measure how close the 
predicted trajectory is to the expert trajectory using a mean squared error (MSE) loss.  
A discriminator Dψ is trained to distinguish expert transitions from policy transitions .The 
combination of these two loss functions is used to train the model.  
 
In order to convert sˆ to aˆ, we match the generated trajectories from the control inputs in the 
library A using a weighted L2 Euclidean error distance over (x, y, z) points on the trajectory. For 
training, we use the AdamW optimizer with a learning rate of 3e − 3.  
 
3) Signal Temporal Logic Specifications: We evaluate the performance of our agent based on 
reaching the goal while adhering to the airport traffic pattern. The goal objective, as well as 
traffic pattern compliance, are both encoded using STL specifications. We use the three stages 
for landing pattern. Φ1, Φ2, and Φ3 represent the STL formulas encoding occupancy of regions 
corresponding to the downward, base, and final stages, respectively. The landing STL 
specification becomes:  
 
ΦL = ♢(Φ1 ∧ (♢ (Φ2 ∧ (♢ □Φ3))))  
 
♢ (Φ) can be interpreted as “Eventually” being in a region represented by Φ. The nested ♢ 
operators encode a sequential visit of regions represented by Φ1, Φ2, and Φ3 . Similarly, the 
takeoff STL specification is defined based on the goal regions reached by the aircraft. By 
defining reaching a goal region g ∼ G by an STL formula Φ4, we get the takeoff specification:  
 
ΦT = ♢(Φ4)  
 
The robustness values of the STL specifications are eval uated on the state trajectory traces 
generated by the search tree. The first element of the traces is the tree root node, and the last 
element of the trace is the node whose value is being computed.  
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4) Online Monte Carlo Tree Search : The MCTS is implemented as a recursive function where 
each iteration ends with a new leaf that corresponds to an action in the trajectory library. The 
implementation uses a normalized costmap v(s) that is built by counting the frequencies of the 
aircraft in the TrajAir dataset at particular states s.  
 

Evaluations 
 
Evaluation of the proposed approach is performed using a custom simulator that follows the 
dynamics defined in Eq. 4. The network implementations are in PyTorch. We use the recently 
released rtamt  package, an online monitoring library for calculating STL robustness values. To 
showcase real-time online evaluations, simulations are performed on an Intel NUC computer 
with Intel® Core™ i7- 8559U CPU @ 2.70GHz × 8. The complete implementation details and 
parameter details are in the open-sourced code base3and the associated Readme.  
 
A. Qualitative results 

 
Figure shows an example scenario where the aircraft starts from the South-West and is tasked 
with landing at R26 while following the standard FAA traffic pattern. The rules of the traffic 
pattern are encoded as STL specifications. The white marked line shows the aircraft’s position 
at each step. At every step, the MCTS replans, and the resulting tree is shown in magenta. The 
STL sub-specifications are shown as rectangles. As can be seen, the aircraft manages to reach 
the runway while satisfying the specifications. The size of the search tree is a function of 
available planHorizon.  
 
B. Comparative results  
In order to perform quantitative studies, we compare the performance of the proposed algorithm 
with vanilla LfD policies. We uniformly sample 100 start-goal pairs randomly from ρ0, G. G is 
truncated to N, S, E, W, R where R rep resents both R08 and R26 to condense the results. We 
then provide these to Algorithm 1, which plans for the agent.  
Based on the selected start and goal pair, a relevant STL specification is chosen. Each episode 
ends when the agent reaches the goal or if the maximum steps are exceeded. In addition to the 
goalGAIL policy, we also train a pure Behavior Cloning (BC) policy. The BC policy uses a TCN 
to encode the history and outputs an action without a goal vector or a discriminator. 
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Comparisons were carried out with both these policies integrated into the MCTS framework with 
ablation on the STL heuristic to show the impact of the STL specification.  
We define our evaluation metrics as follows:  
• Success Rate: Fraction of episodes that were successful in reaching their goal locations.  
• STL Score: Average of the normalized fraction of the STL robustness value satisfied over all 
the episodes. A higher value indicates better satisfaction.  
Table I shows the quantitative results. Our proposed algorithm performs significantly better than 
the baselines for all start-goal pairs. We get an almost perfect success rate in the aircraft takeoff 
scenarios. The aircraft landing cases are more challenging due to following the specific landing 
patterns when incoming from different sides of the runway, which is reflected in the success 
rates shown. Additionally, we observe the baseline BC performs similarly to GAIL on the 
success metric but not on the STL robustness. This shows that while BC policies are 
comparable in reaching the goals, the transient performance of GoalGAIL is better.  
Incorporating STL improves the robustness values for both LfD policies.  

 
 

3.4 Speech Recognition 
 
We introduce two off-the-shelf modules to realize the automatic speech recognition and speech 
generation functionality. For speech-to-text, we use a Speech to Text Transformer model trained 
on the Librispeech corpus. This model achieves a Word Error Rate of 41.3% and a Character 
Error Rate of 12.9% on our in-house dataset. To further improve the model’s prediction accuracy, 
we use string matching to replace the predicted words or phrases to those more probable in the 
air traffic control scenario (e.g., “one way two six” → “runway two six”). 
 
Additionally, to investigate the capability of the speech-to-text model even further, we evaluate 
the model without further fine-tuning on a subset of the LDC Air Traffic Control Corpus, which is 
a dataset collected from actual pilot utterance recordings. Speech collected in the Air Traffic 
Control domain typically contains excessive background noise coming from aircraft, and speakers 
tend to talk much quicker than the Librispeech and Commonvoice corpora general speech-to-text 
models are trained on. As expected, in this dataset, the model achieves a Word Error Rate of 
91% and a Character Error Rate of 60.6%. The relatively high error rate can be explained by the 
distinct properties of speech recorded in Air Traffic Control domains, and expect that in-domain 
fine-tuning can boost the recognition accuracy in relevant datasets. For text-to-speech, we employ 
the recently proposed FastSpeech 2 model and apply slot-filling to a pre-defined set of template 
utterances. 
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4. Significant Hardware or Software Developed: 
 

    

4.1 High Fidelity Simulator 
 

 
Figure. XPlaneROS Architecture 

 
XPlaneROS (5.2.2) integrates a high-fidelity simulator with a state-of-the-art autopilot. The 
complete system enables the use of high-level or lower-level commands to control a general 
aviation aircraft in realistic world scenarios anywhere in the world. We chose X-Plane 11 as our 
simulator because of its open API and realistic aircraft models and visuals. For the lower-level 
control, we’ve integrated ROSplane as the autopilot. ROSplane is a control stack for fixed-wing 
aircraft developed by the BYU MAGICC Lab. 
 
XPlaneROS interfaces with XPlane 11 using NASA’s XPlaneConnect. With XPlaneROS, the 
information from XPlane is published over ROS topics. The ROSplane integration then uses this 
information to generate actuator commands for ailerons, rudder, elevator, and throttle based on 
higher-level input to the system. These actuator commands are then sent to XPlane through 
XPlaneConnect. 
 
ROSplane uses a cascaded control structure and has the ability to follow waypoints with Dubin’s 
Paths. XPlaneROS provides additional capabilities to follow a select set of motion primitives. 
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There have also been some extensions to ROSplane like employing a proper takeoff, additional 
control loops for vertical velocity rates and a rudimentary autonomous landing sequence. 
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